MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbrimOLD Structured version   Visualization version   GIF version

Theorem sbrimOLD 2300
Description: Obsolete version of sbrim 2299 as of 20-Nov-2024. (Contributed by NM, 2-Jun-1993.) (Revised by Mario Carneiro, 4-Oct-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
sbrim.1 𝑥𝜑
Assertion
Ref Expression
sbrimOLD ([𝑦 / 𝑥](𝜑𝜓) ↔ (𝜑 → [𝑦 / 𝑥]𝜓))

Proof of Theorem sbrimOLD
StepHypRef Expression
1 sbim 2298 . 2 ([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓))
2 sbrim.1 . . . 4 𝑥𝜑
32sbf 2261 . . 3 ([𝑦 / 𝑥]𝜑𝜑)
43imbi1i 350 . 2 (([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓) ↔ (𝜑 → [𝑦 / 𝑥]𝜓))
51, 4bitri 275 1 ([𝑦 / 𝑥](𝜑𝜓) ↔ (𝜑 → [𝑦 / 𝑥]𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wnf 1783  [wsb 2065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-10 2135  ax-12 2169
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-ex 1780  df-nf 1784  df-sb 2066
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator