Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbrimOLD | Structured version Visualization version GIF version |
Description: Obsolete version of sbrim 2299 as of 20-Nov-2024. (Contributed by NM, 2-Jun-1993.) (Revised by Mario Carneiro, 4-Oct-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
sbrim.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
sbrimOLD | ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ (𝜑 → [𝑦 / 𝑥]𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbim 2298 | . 2 ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) | |
2 | sbrim.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
3 | 2 | sbf 2261 | . . 3 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜑) |
4 | 3 | imbi1i 350 | . 2 ⊢ (([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓) ↔ (𝜑 → [𝑦 / 𝑥]𝜓)) |
5 | 1, 4 | bitri 275 | 1 ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ (𝜑 → [𝑦 / 𝑥]𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 Ⅎwnf 1783 [wsb 2065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-10 2135 ax-12 2169 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-ex 1780 df-nf 1784 df-sb 2066 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |