|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > sbrimOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of sbrim 2303 as of 20-Nov-2024. (Contributed by NM, 2-Jun-1993.) (Revised by Mario Carneiro, 4-Oct-2016.) (Proof modification is discouraged.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| sbrim.1 | ⊢ Ⅎ𝑥𝜑 | 
| Ref | Expression | 
|---|---|
| sbrimOLD | ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ (𝜑 → [𝑦 / 𝑥]𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sbim 2302 | . 2 ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) | |
| 2 | sbrim.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 3 | 2 | sbf 2270 | . . 3 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜑) | 
| 4 | 3 | imbi1i 349 | . 2 ⊢ (([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓) ↔ (𝜑 → [𝑦 / 𝑥]𝜓)) | 
| 5 | 1, 4 | bitri 275 | 1 ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ (𝜑 → [𝑦 / 𝑥]𝜓)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 Ⅎwnf 1782 [wsb 2063 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-10 2140 ax-12 2176 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-nf 1783 df-sb 2064 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |