Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbn1ALT Structured version   Visualization version   GIF version

Theorem sbn1ALT 35042
Description: Alternate proof of sbn1 2105, not using the false constant. (Contributed by BJ, 18-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
sbn1ALT ([𝑡 / 𝑥] ¬ 𝜑 → ¬ [𝑡 / 𝑥]𝜑)

Proof of Theorem sbn1ALT
StepHypRef Expression
1 nsb 2104 . . . 4 (∀𝑥 ¬ (𝜑 ∧ ¬ 𝜑) → ¬ [𝑡 / 𝑥](𝜑 ∧ ¬ 𝜑))
2 pm3.24 403 . . . 4 ¬ (𝜑 ∧ ¬ 𝜑)
31, 2mpg 1800 . . 3 ¬ [𝑡 / 𝑥](𝜑 ∧ ¬ 𝜑)
4 sban 2083 . . 3 ([𝑡 / 𝑥](𝜑 ∧ ¬ 𝜑) ↔ ([𝑡 / 𝑥]𝜑 ∧ [𝑡 / 𝑥] ¬ 𝜑))
53, 4mtbi 322 . 2 ¬ ([𝑡 / 𝑥]𝜑 ∧ [𝑡 / 𝑥] ¬ 𝜑)
6 pm3.21 472 . 2 ([𝑡 / 𝑥] ¬ 𝜑 → ([𝑡 / 𝑥]𝜑 → ([𝑡 / 𝑥]𝜑 ∧ [𝑡 / 𝑥] ¬ 𝜑)))
75, 6mtoi 198 1 ([𝑡 / 𝑥] ¬ 𝜑 → ¬ [𝑡 / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  [wsb 2067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-sb 2068
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator