| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbbi | Structured version Visualization version GIF version | ||
| Description: Equivalence inside and outside of a substitution are equivalent. (Contributed by NM, 14-May-1993.) |
| Ref | Expression |
|---|---|
| sbbi | ⊢ ([𝑦 / 𝑥](𝜑 ↔ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfbi2 474 | . . 3 ⊢ ((𝜑 ↔ 𝜓) ↔ ((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) | |
| 2 | 1 | sbbii 2076 | . 2 ⊢ ([𝑦 / 𝑥](𝜑 ↔ 𝜓) ↔ [𝑦 / 𝑥]((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) |
| 3 | sbim 2303 | . . . 4 ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) | |
| 4 | sbim 2303 | . . . 4 ⊢ ([𝑦 / 𝑥](𝜓 → 𝜑) ↔ ([𝑦 / 𝑥]𝜓 → [𝑦 / 𝑥]𝜑)) | |
| 5 | 3, 4 | anbi12i 628 | . . 3 ⊢ (([𝑦 / 𝑥](𝜑 → 𝜓) ∧ [𝑦 / 𝑥](𝜓 → 𝜑)) ↔ (([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓) ∧ ([𝑦 / 𝑥]𝜓 → [𝑦 / 𝑥]𝜑))) |
| 6 | sban 2080 | . . 3 ⊢ ([𝑦 / 𝑥]((𝜑 → 𝜓) ∧ (𝜓 → 𝜑)) ↔ ([𝑦 / 𝑥](𝜑 → 𝜓) ∧ [𝑦 / 𝑥](𝜓 → 𝜑))) | |
| 7 | dfbi2 474 | . . 3 ⊢ (([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜓) ↔ (([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓) ∧ ([𝑦 / 𝑥]𝜓 → [𝑦 / 𝑥]𝜑))) | |
| 8 | 5, 6, 7 | 3bitr4i 303 | . 2 ⊢ ([𝑦 / 𝑥]((𝜑 → 𝜓) ∧ (𝜓 → 𝜑)) ↔ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜓)) |
| 9 | 2, 8 | bitri 275 | 1 ⊢ ([𝑦 / 𝑥](𝜑 ↔ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 [wsb 2064 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-10 2141 ax-12 2177 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-nf 1784 df-sb 2065 |
| This theorem is referenced by: sblbis 2309 sbrbis 2310 pm13.183 3666 sbcbig 3840 sb8iota 6525 bj-sbidmOLD 36851 |
| Copyright terms: Public domain | W3C validator |