MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbbi Structured version   Visualization version   GIF version

Theorem sbbi 2532
Description: Equivalence inside and outside of a substitution are equivalent. For a version requiring disjoint variables, but fewer axioms, see sbbiv 2341. (Contributed by NM, 14-May-1993.)
Assertion
Ref Expression
sbbi ([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜓))

Proof of Theorem sbbi
StepHypRef Expression
1 dfbi2 468 . . 3 ((𝜑𝜓) ↔ ((𝜑𝜓) ∧ (𝜓𝜑)))
21sbbii 2076 . 2 ([𝑦 / 𝑥](𝜑𝜓) ↔ [𝑦 / 𝑥]((𝜑𝜓) ∧ (𝜓𝜑)))
3 sbim 2526 . . . 4 ([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓))
4 sbim 2526 . . . 4 ([𝑦 / 𝑥](𝜓𝜑) ↔ ([𝑦 / 𝑥]𝜓 → [𝑦 / 𝑥]𝜑))
53, 4anbi12i 622 . . 3 (([𝑦 / 𝑥](𝜑𝜓) ∧ [𝑦 / 𝑥](𝜓𝜑)) ↔ (([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓) ∧ ([𝑦 / 𝑥]𝜓 → [𝑦 / 𝑥]𝜑)))
6 sban 2530 . . 3 ([𝑦 / 𝑥]((𝜑𝜓) ∧ (𝜓𝜑)) ↔ ([𝑦 / 𝑥](𝜑𝜓) ∧ [𝑦 / 𝑥](𝜓𝜑)))
7 dfbi2 468 . . 3 (([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜓) ↔ (([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓) ∧ ([𝑦 / 𝑥]𝜓 → [𝑦 / 𝑥]𝜑)))
85, 6, 73bitr4i 295 . 2 ([𝑦 / 𝑥]((𝜑𝜓) ∧ (𝜓𝜑)) ↔ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜓))
92, 8bitri 267 1 ([𝑦 / 𝑥](𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  [wsb 2069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-10 2194  ax-12 2222  ax-13 2391
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-ex 1881  df-nf 1885  df-sb 2070
This theorem is referenced by:  spsbbi  2533  sblbis  2535  sbrbis  2536  pm13.183  3563  sbcbig  3707  sb8iota  6093  bj-sbidmOLD  33355
  Copyright terms: Public domain W3C validator