Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbss Structured version   Visualization version   GIF version

Theorem sbss 4445
 Description: Set substitution into the first argument of a subset relation. (Contributed by Rodolfo Medina, 7-Jul-2010.) (Proof shortened by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
sbss ([𝑦 / 𝑥]𝑥𝐴𝑦𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem sbss
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 sseq1 3978 . 2 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
2 sseq1 3978 . 2 (𝑧 = 𝑦 → (𝑧𝐴𝑦𝐴))
31, 2sbievw2 2108 1 ([𝑦 / 𝑥]𝑥𝐴𝑦𝐴)
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 209  [wsb 2070   ⊆ wss 3919 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-ext 2796 This theorem depends on definitions:  df-bi 210  df-an 400  df-ex 1782  df-sb 2071  df-clab 2803  df-cleq 2817  df-clel 2896  df-v 3482  df-in 3926  df-ss 3936 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator