MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbss Structured version   Visualization version   GIF version

Theorem sbss 4450
Description: Set substitution into the first argument of a subset relation. (Contributed by Rodolfo Medina, 7-Jul-2010.) (Proof shortened by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
sbss ([𝑦 / 𝑥]𝑥𝐴𝑦𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem sbss
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 sseq1 3942 . 2 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
2 sseq1 3942 . 2 (𝑧 = 𝑦 → (𝑧𝐴𝑦𝐴))
31, 2sbievw2 2101 1 ([𝑦 / 𝑥]𝑥𝐴𝑦𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 205  [wsb 2068  wss 3883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-in 3890  df-ss 3900
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator