| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbcssg | Structured version Visualization version GIF version | ||
| Description: Distribute proper substitution through a subclass relation. (Contributed by Alan Sare, 22-Jul-2012.) (Proof shortened by Alexander van der Vekens, 23-Jul-2017.) |
| Ref | Expression |
|---|---|
| sbcssg | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 ⊆ 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 ⊆ ⦋𝐴 / 𝑥⦌𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcal 3825 | . . 3 ⊢ ([𝐴 / 𝑥]∀𝑦(𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶) ↔ ∀𝑦[𝐴 / 𝑥](𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶)) | |
| 2 | sbcimg 3814 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶) ↔ ([𝐴 / 𝑥]𝑦 ∈ 𝐵 → [𝐴 / 𝑥]𝑦 ∈ 𝐶))) | |
| 3 | sbcel2 4393 | . . . . . 6 ⊢ ([𝐴 / 𝑥]𝑦 ∈ 𝐵 ↔ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵) | |
| 4 | sbcel2 4393 | . . . . . 6 ⊢ ([𝐴 / 𝑥]𝑦 ∈ 𝐶 ↔ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶) | |
| 5 | 3, 4 | imbi12i 350 | . . . . 5 ⊢ (([𝐴 / 𝑥]𝑦 ∈ 𝐵 → [𝐴 / 𝑥]𝑦 ∈ 𝐶) ↔ (𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵 → 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶)) |
| 6 | 2, 5 | bitrdi 287 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶) ↔ (𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵 → 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))) |
| 7 | 6 | albidv 1920 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (∀𝑦[𝐴 / 𝑥](𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶) ↔ ∀𝑦(𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵 → 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))) |
| 8 | 1, 7 | bitrid 283 | . 2 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]∀𝑦(𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶) ↔ ∀𝑦(𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵 → 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))) |
| 9 | df-ss 3943 | . . 3 ⊢ (𝐵 ⊆ 𝐶 ↔ ∀𝑦(𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶)) | |
| 10 | 9 | sbcbii 3822 | . 2 ⊢ ([𝐴 / 𝑥]𝐵 ⊆ 𝐶 ↔ [𝐴 / 𝑥]∀𝑦(𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶)) |
| 11 | df-ss 3943 | . 2 ⊢ (⦋𝐴 / 𝑥⦌𝐵 ⊆ ⦋𝐴 / 𝑥⦌𝐶 ↔ ∀𝑦(𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵 → 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶)) | |
| 12 | 8, 10, 11 | 3bitr4g 314 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 ⊆ 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 ⊆ ⦋𝐴 / 𝑥⦌𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 ∈ wcel 2108 [wsbc 3765 ⦋csb 3874 ⊆ wss 3926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-ss 3943 df-nul 4309 |
| This theorem is referenced by: sbcrel 5759 sbcfg 6704 csbfrecsg 8283 iuninc 32541 minregex 43558 brtrclfv2 43751 cotrclrcl 43766 sbcheg 43803 |
| Copyright terms: Public domain | W3C validator |