![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbcssg | Structured version Visualization version GIF version |
Description: Distribute proper substitution through a subclass relation. (Contributed by Alan Sare, 22-Jul-2012.) (Proof shortened by Alexander van der Vekens, 23-Jul-2017.) |
Ref | Expression |
---|---|
sbcssg | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 ⊆ 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 ⊆ ⦋𝐴 / 𝑥⦌𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcal 3868 | . . 3 ⊢ ([𝐴 / 𝑥]∀𝑦(𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶) ↔ ∀𝑦[𝐴 / 𝑥](𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶)) | |
2 | sbcimg 3856 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶) ↔ ([𝐴 / 𝑥]𝑦 ∈ 𝐵 → [𝐴 / 𝑥]𝑦 ∈ 𝐶))) | |
3 | sbcel2 4441 | . . . . . 6 ⊢ ([𝐴 / 𝑥]𝑦 ∈ 𝐵 ↔ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵) | |
4 | sbcel2 4441 | . . . . . 6 ⊢ ([𝐴 / 𝑥]𝑦 ∈ 𝐶 ↔ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶) | |
5 | 3, 4 | imbi12i 350 | . . . . 5 ⊢ (([𝐴 / 𝑥]𝑦 ∈ 𝐵 → [𝐴 / 𝑥]𝑦 ∈ 𝐶) ↔ (𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵 → 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶)) |
6 | 2, 5 | bitrdi 287 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶) ↔ (𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵 → 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))) |
7 | 6 | albidv 1919 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (∀𝑦[𝐴 / 𝑥](𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶) ↔ ∀𝑦(𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵 → 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))) |
8 | 1, 7 | bitrid 283 | . 2 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]∀𝑦(𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶) ↔ ∀𝑦(𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵 → 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))) |
9 | df-ss 3993 | . . 3 ⊢ (𝐵 ⊆ 𝐶 ↔ ∀𝑦(𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶)) | |
10 | 9 | sbcbii 3865 | . 2 ⊢ ([𝐴 / 𝑥]𝐵 ⊆ 𝐶 ↔ [𝐴 / 𝑥]∀𝑦(𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶)) |
11 | df-ss 3993 | . 2 ⊢ (⦋𝐴 / 𝑥⦌𝐵 ⊆ ⦋𝐴 / 𝑥⦌𝐶 ↔ ∀𝑦(𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵 → 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶)) | |
12 | 8, 10, 11 | 3bitr4g 314 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 ⊆ 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 ⊆ ⦋𝐴 / 𝑥⦌𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wal 1535 ∈ wcel 2108 [wsbc 3804 ⦋csb 3921 ⊆ wss 3976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-ss 3993 df-nul 4353 |
This theorem is referenced by: sbcrel 5804 sbcfg 6745 csbfrecsg 8325 iuninc 32583 minregex 43496 brtrclfv2 43689 cotrclrcl 43704 sbcheg 43741 |
Copyright terms: Public domain | W3C validator |