| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbcssg | Structured version Visualization version GIF version | ||
| Description: Distribute proper substitution through a subclass relation. (Contributed by Alan Sare, 22-Jul-2012.) (Proof shortened by Alexander van der Vekens, 23-Jul-2017.) |
| Ref | Expression |
|---|---|
| sbcssg | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 ⊆ 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 ⊆ ⦋𝐴 / 𝑥⦌𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcal 3797 | . . 3 ⊢ ([𝐴 / 𝑥]∀𝑦(𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶) ↔ ∀𝑦[𝐴 / 𝑥](𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶)) | |
| 2 | sbcimg 3786 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶) ↔ ([𝐴 / 𝑥]𝑦 ∈ 𝐵 → [𝐴 / 𝑥]𝑦 ∈ 𝐶))) | |
| 3 | sbcel2 4367 | . . . . . 6 ⊢ ([𝐴 / 𝑥]𝑦 ∈ 𝐵 ↔ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵) | |
| 4 | sbcel2 4367 | . . . . . 6 ⊢ ([𝐴 / 𝑥]𝑦 ∈ 𝐶 ↔ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶) | |
| 5 | 3, 4 | imbi12i 350 | . . . . 5 ⊢ (([𝐴 / 𝑥]𝑦 ∈ 𝐵 → [𝐴 / 𝑥]𝑦 ∈ 𝐶) ↔ (𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵 → 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶)) |
| 6 | 2, 5 | bitrdi 287 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥](𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶) ↔ (𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵 → 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))) |
| 7 | 6 | albidv 1921 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (∀𝑦[𝐴 / 𝑥](𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶) ↔ ∀𝑦(𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵 → 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))) |
| 8 | 1, 7 | bitrid 283 | . 2 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]∀𝑦(𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶) ↔ ∀𝑦(𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵 → 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))) |
| 9 | df-ss 3915 | . . 3 ⊢ (𝐵 ⊆ 𝐶 ↔ ∀𝑦(𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶)) | |
| 10 | 9 | sbcbii 3794 | . 2 ⊢ ([𝐴 / 𝑥]𝐵 ⊆ 𝐶 ↔ [𝐴 / 𝑥]∀𝑦(𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶)) |
| 11 | df-ss 3915 | . 2 ⊢ (⦋𝐴 / 𝑥⦌𝐵 ⊆ ⦋𝐴 / 𝑥⦌𝐶 ↔ ∀𝑦(𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵 → 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶)) | |
| 12 | 8, 10, 11 | 3bitr4g 314 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 ⊆ 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 ⊆ ⦋𝐴 / 𝑥⦌𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1539 ∈ wcel 2113 [wsbc 3737 ⦋csb 3846 ⊆ wss 3898 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-ss 3915 df-nul 4283 |
| This theorem is referenced by: sbcrel 5725 sbcfg 6654 csbfrecsg 8220 iuninc 32542 minregex 43651 brtrclfv2 43844 cotrclrcl 43859 sbcheg 43896 |
| Copyright terms: Public domain | W3C validator |