MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcssg Structured version   Visualization version   GIF version

Theorem sbcssg 4522
Description: Distribute proper substitution through a subclass relation. (Contributed by Alan Sare, 22-Jul-2012.) (Proof shortened by Alexander van der Vekens, 23-Jul-2017.)
Assertion
Ref Expression
sbcssg (𝐴𝑉 → ([𝐴 / 𝑥]𝐵𝐶𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))

Proof of Theorem sbcssg
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 sbcal 3840 . . 3 ([𝐴 / 𝑥]𝑦(𝑦𝐵𝑦𝐶) ↔ ∀𝑦[𝐴 / 𝑥](𝑦𝐵𝑦𝐶))
2 sbcimg 3827 . . . . 5 (𝐴𝑉 → ([𝐴 / 𝑥](𝑦𝐵𝑦𝐶) ↔ ([𝐴 / 𝑥]𝑦𝐵[𝐴 / 𝑥]𝑦𝐶)))
3 sbcel2 4414 . . . . . 6 ([𝐴 / 𝑥]𝑦𝐵𝑦𝐴 / 𝑥𝐵)
4 sbcel2 4414 . . . . . 6 ([𝐴 / 𝑥]𝑦𝐶𝑦𝐴 / 𝑥𝐶)
53, 4imbi12i 349 . . . . 5 (([𝐴 / 𝑥]𝑦𝐵[𝐴 / 𝑥]𝑦𝐶) ↔ (𝑦𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶))
62, 5bitrdi 286 . . . 4 (𝐴𝑉 → ([𝐴 / 𝑥](𝑦𝐵𝑦𝐶) ↔ (𝑦𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶)))
76albidv 1921 . . 3 (𝐴𝑉 → (∀𝑦[𝐴 / 𝑥](𝑦𝐵𝑦𝐶) ↔ ∀𝑦(𝑦𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶)))
81, 7bitrid 282 . 2 (𝐴𝑉 → ([𝐴 / 𝑥]𝑦(𝑦𝐵𝑦𝐶) ↔ ∀𝑦(𝑦𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶)))
9 dfss2 3967 . . 3 (𝐵𝐶 ↔ ∀𝑦(𝑦𝐵𝑦𝐶))
109sbcbii 3836 . 2 ([𝐴 / 𝑥]𝐵𝐶[𝐴 / 𝑥]𝑦(𝑦𝐵𝑦𝐶))
11 dfss2 3967 . 2 (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶 ↔ ∀𝑦(𝑦𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶))
128, 10, 113bitr4g 313 1 (𝐴𝑉 → ([𝐴 / 𝑥]𝐵𝐶𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537  wcel 2104  [wsbc 3776  csb 3892  wss 3947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-in 3954  df-ss 3964  df-nul 4322
This theorem is referenced by:  sbcrel  5779  sbcfg  6714  csbfrecsg  8271  iuninc  32059  minregex  42587  brtrclfv2  42780  cotrclrcl  42795  sbcheg  42832
  Copyright terms: Public domain W3C validator