MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcssg Structured version   Visualization version   GIF version

Theorem sbcssg 4451
Description: Distribute proper substitution through a subclass relation. (Contributed by Alan Sare, 22-Jul-2012.) (Proof shortened by Alexander van der Vekens, 23-Jul-2017.)
Assertion
Ref Expression
sbcssg (𝐴𝑉 → ([𝐴 / 𝑥]𝐵𝐶𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))

Proof of Theorem sbcssg
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 sbcal 3776 . . 3 ([𝐴 / 𝑥]𝑦(𝑦𝐵𝑦𝐶) ↔ ∀𝑦[𝐴 / 𝑥](𝑦𝐵𝑦𝐶))
2 sbcimg 3762 . . . . 5 (𝐴𝑉 → ([𝐴 / 𝑥](𝑦𝐵𝑦𝐶) ↔ ([𝐴 / 𝑥]𝑦𝐵[𝐴 / 𝑥]𝑦𝐶)))
3 sbcel2 4346 . . . . . 6 ([𝐴 / 𝑥]𝑦𝐵𝑦𝐴 / 𝑥𝐵)
4 sbcel2 4346 . . . . . 6 ([𝐴 / 𝑥]𝑦𝐶𝑦𝐴 / 𝑥𝐶)
53, 4imbi12i 350 . . . . 5 (([𝐴 / 𝑥]𝑦𝐵[𝐴 / 𝑥]𝑦𝐶) ↔ (𝑦𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶))
62, 5bitrdi 286 . . . 4 (𝐴𝑉 → ([𝐴 / 𝑥](𝑦𝐵𝑦𝐶) ↔ (𝑦𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶)))
76albidv 1924 . . 3 (𝐴𝑉 → (∀𝑦[𝐴 / 𝑥](𝑦𝐵𝑦𝐶) ↔ ∀𝑦(𝑦𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶)))
81, 7syl5bb 282 . 2 (𝐴𝑉 → ([𝐴 / 𝑥]𝑦(𝑦𝐵𝑦𝐶) ↔ ∀𝑦(𝑦𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶)))
9 dfss2 3903 . . 3 (𝐵𝐶 ↔ ∀𝑦(𝑦𝐵𝑦𝐶))
109sbcbii 3772 . 2 ([𝐴 / 𝑥]𝐵𝐶[𝐴 / 𝑥]𝑦(𝑦𝐵𝑦𝐶))
11 dfss2 3903 . 2 (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶 ↔ ∀𝑦(𝑦𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶))
128, 10, 113bitr4g 313 1 (𝐴𝑉 → ([𝐴 / 𝑥]𝐵𝐶𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537  wcel 2108  [wsbc 3711  csb 3828  wss 3883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-in 3890  df-ss 3900  df-nul 4254
This theorem is referenced by:  sbcrel  5681  sbcfg  6582  csbfrecsg  8071  iuninc  30801  brtrclfv2  41224  cotrclrcl  41239  sbcheg  41276
  Copyright terms: Public domain W3C validator