![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > raaanv | Structured version Visualization version GIF version |
Description: Rearrange restricted quantifiers. (Contributed by NM, 11-Mar-1997.) |
Ref | Expression |
---|---|
raaanv | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑦 ∈ 𝐴 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rzal 4515 | . . 3 ⊢ (𝐴 = ∅ → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓)) | |
2 | rzal 4515 | . . 3 ⊢ (𝐴 = ∅ → ∀𝑥 ∈ 𝐴 𝜑) | |
3 | rzal 4515 | . . 3 ⊢ (𝐴 = ∅ → ∀𝑦 ∈ 𝐴 𝜓) | |
4 | pm5.1 824 | . . 3 ⊢ ((∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓) ∧ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑦 ∈ 𝐴 𝜓)) → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑦 ∈ 𝐴 𝜓))) | |
5 | 1, 2, 3, 4 | syl12anc 837 | . 2 ⊢ (𝐴 = ∅ → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑦 ∈ 𝐴 𝜓))) |
6 | r19.28zv 4507 | . . . 4 ⊢ (𝐴 ≠ ∅ → (∀𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∀𝑦 ∈ 𝐴 𝜓))) | |
7 | 6 | ralbidv 3176 | . . 3 ⊢ (𝐴 ≠ ∅ → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ ∀𝑥 ∈ 𝐴 (𝜑 ∧ ∀𝑦 ∈ 𝐴 𝜓))) |
8 | r19.27zv 4512 | . . 3 ⊢ (𝐴 ≠ ∅ → (∀𝑥 ∈ 𝐴 (𝜑 ∧ ∀𝑦 ∈ 𝐴 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑦 ∈ 𝐴 𝜓))) | |
9 | 7, 8 | bitrd 279 | . 2 ⊢ (𝐴 ≠ ∅ → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑦 ∈ 𝐴 𝜓))) |
10 | 5, 9 | pm2.61ine 3023 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑦 ∈ 𝐴 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ≠ wne 2938 ∀wral 3059 ∅c0 4339 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-9 2116 ax-12 2175 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-clab 2713 df-cleq 2727 df-ne 2939 df-ral 3060 df-dif 3966 df-nul 4340 |
This theorem is referenced by: reusv3i 5410 f1mpt 7281 isclo2 23112 ntrk2imkb 44027 |
Copyright terms: Public domain | W3C validator |