MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  raaanv Structured version   Visualization version   GIF version

Theorem raaanv 4522
Description: Rearrange restricted quantifiers. (Contributed by NM, 11-Mar-1997.)
Assertion
Ref Expression
raaanv (∀𝑥𝐴𝑦𝐴 (𝜑𝜓) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑦𝐴 𝜓))
Distinct variable groups:   𝜑,𝑦   𝜓,𝑥   𝑥,𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem raaanv
StepHypRef Expression
1 rzal 4509 . . 3 (𝐴 = ∅ → ∀𝑥𝐴𝑦𝐴 (𝜑𝜓))
2 rzal 4509 . . 3 (𝐴 = ∅ → ∀𝑥𝐴 𝜑)
3 rzal 4509 . . 3 (𝐴 = ∅ → ∀𝑦𝐴 𝜓)
4 pm5.1 820 . . 3 ((∀𝑥𝐴𝑦𝐴 (𝜑𝜓) ∧ (∀𝑥𝐴 𝜑 ∧ ∀𝑦𝐴 𝜓)) → (∀𝑥𝐴𝑦𝐴 (𝜑𝜓) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑦𝐴 𝜓)))
51, 2, 3, 4syl12anc 833 . 2 (𝐴 = ∅ → (∀𝑥𝐴𝑦𝐴 (𝜑𝜓) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑦𝐴 𝜓)))
6 r19.28zv 4501 . . . 4 (𝐴 ≠ ∅ → (∀𝑦𝐴 (𝜑𝜓) ↔ (𝜑 ∧ ∀𝑦𝐴 𝜓)))
76ralbidv 3175 . . 3 (𝐴 ≠ ∅ → (∀𝑥𝐴𝑦𝐴 (𝜑𝜓) ↔ ∀𝑥𝐴 (𝜑 ∧ ∀𝑦𝐴 𝜓)))
8 r19.27zv 4506 . . 3 (𝐴 ≠ ∅ → (∀𝑥𝐴 (𝜑 ∧ ∀𝑦𝐴 𝜓) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑦𝐴 𝜓)))
97, 8bitrd 278 . 2 (𝐴 ≠ ∅ → (∀𝑥𝐴𝑦𝐴 (𝜑𝜓) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑦𝐴 𝜓)))
105, 9pm2.61ine 3023 1 (∀𝑥𝐴𝑦𝐴 (𝜑𝜓) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑦𝐴 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 394   = wceq 1539  wne 2938  wral 3059  c0 4323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-9 2114  ax-12 2169  ax-ext 2701
This theorem depends on definitions:  df-bi 206  df-an 395  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2722  df-ne 2939  df-ral 3060  df-dif 3952  df-nul 4324
This theorem is referenced by:  reusv3i  5403  f1mpt  7264  isclo2  22814  ntrk2imkb  43092
  Copyright terms: Public domain W3C validator