Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  scottabes Structured version   Visualization version   GIF version

Theorem scottabes 41749
Description: Value of the Scott operation at a class abstraction. Variant of scottab 41748 using explicit substitution. (Contributed by Rohan Ridenour, 14-Aug-2023.)
Assertion
Ref Expression
scottabes Scott {𝑥𝜑} = {𝑥 ∣ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))}
Distinct variable groups:   𝜑,𝑦   𝑥,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem scottabes
StepHypRef Expression
1 nfs1v 2155 . 2 𝑥[𝑦 / 𝑥]𝜑
2 sbequ12 2247 . 2 (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑))
31, 2scottabf 41747 1 Scott {𝑥𝜑} = {𝑥 ∣ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1537   = wceq 1539  [wsb 2068  {cab 2715  wss 3883  cfv 6418  rankcrnk 9452  Scott cscott 41742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-scott 41743
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator