| Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > scottabes | Structured version Visualization version GIF version | ||
| Description: Value of the Scott operation at a class abstraction. Variant of scottab 44398 using explicit substitution. (Contributed by Rohan Ridenour, 14-Aug-2023.) |
| Ref | Expression |
|---|---|
| scottabes | ⊢ Scott {𝑥 ∣ 𝜑} = {𝑥 ∣ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfs1v 2161 | . 2 ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 | |
| 2 | sbequ12 2256 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
| 3 | 1, 2 | scottabf 44397 | 1 ⊢ Scott {𝑥 ∣ 𝜑} = {𝑥 ∣ (𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → (rank‘𝑥) ⊆ (rank‘𝑦)))} |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1539 = wceq 1541 [wsb 2067 {cab 2711 ⊆ wss 3898 ‘cfv 6489 rankcrnk 9667 Scott cscott 44392 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ral 3049 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-iota 6445 df-fv 6497 df-scott 44393 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |