| Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elscottab | Structured version Visualization version GIF version | ||
| Description: An element of the output of the Scott operation applied to a class abstraction satisfies the class abstraction's predicate. (Contributed by Rohan Ridenour, 14-Aug-2023.) |
| Ref | Expression |
|---|---|
| elscottab.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| elscottab | ⊢ (𝑦 ∈ Scott {𝑥 ∣ 𝜑} → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | scottss 44234 | . . 3 ⊢ Scott {𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜑} | |
| 2 | 1 | sseli 3959 | . 2 ⊢ (𝑦 ∈ Scott {𝑥 ∣ 𝜑} → 𝑦 ∈ {𝑥 ∣ 𝜑}) |
| 3 | vex 3468 | . . 3 ⊢ 𝑦 ∈ V | |
| 4 | elscottab.1 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 5 | 3, 4 | elab 3663 | . 2 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓) |
| 6 | 2, 5 | sylib 218 | 1 ⊢ (𝑦 ∈ Scott {𝑥 ∣ 𝜑} → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2109 {cab 2714 Scott cscott 44226 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-ss 3948 df-scott 44227 |
| This theorem is referenced by: cpcolld 44249 grucollcld 44251 |
| Copyright terms: Public domain | W3C validator |