Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elscottab Structured version   Visualization version   GIF version

Theorem elscottab 41751
Description: An element of the output of the Scott operation applied to a class abstraction satisfies the class abstraction's predicate. (Contributed by Rohan Ridenour, 14-Aug-2023.)
Hypothesis
Ref Expression
elscottab.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
elscottab (𝑦 ∈ Scott {𝑥𝜑} → 𝜓)
Distinct variable groups:   𝜓,𝑥   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑦)

Proof of Theorem elscottab
StepHypRef Expression
1 scottss 41750 . . 3 Scott {𝑥𝜑} ⊆ {𝑥𝜑}
21sseli 3913 . 2 (𝑦 ∈ Scott {𝑥𝜑} → 𝑦 ∈ {𝑥𝜑})
3 vex 3426 . . 3 𝑦 ∈ V
4 elscottab.1 . . 3 (𝑥 = 𝑦 → (𝜑𝜓))
53, 4elab 3602 . 2 (𝑦 ∈ {𝑥𝜑} ↔ 𝜓)
62, 5sylib 217 1 (𝑦 ∈ Scott {𝑥𝜑} → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wcel 2108  {cab 2715  Scott cscott 41742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-in 3890  df-ss 3900  df-scott 41743
This theorem is referenced by:  cpcolld  41765  grucollcld  41767
  Copyright terms: Public domain W3C validator