![]() |
Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elscottab | Structured version Visualization version GIF version |
Description: An element of the output of the Scott operation applied to a class abstraction satisfies the class abstraction's predicate. (Contributed by Rohan Ridenour, 14-Aug-2023.) |
Ref | Expression |
---|---|
elscottab.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
elscottab | ⊢ (𝑦 ∈ Scott {𝑥 ∣ 𝜑} → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | scottss 44212 | . . 3 ⊢ Scott {𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜑} | |
2 | 1 | sseli 4004 | . 2 ⊢ (𝑦 ∈ Scott {𝑥 ∣ 𝜑} → 𝑦 ∈ {𝑥 ∣ 𝜑}) |
3 | vex 3492 | . . 3 ⊢ 𝑦 ∈ V | |
4 | elscottab.1 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
5 | 3, 4 | elab 3694 | . 2 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓) |
6 | 2, 5 | sylib 218 | 1 ⊢ (𝑦 ∈ Scott {𝑥 ∣ 𝜑} → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2108 {cab 2717 Scott cscott 44204 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-ss 3993 df-scott 44205 |
This theorem is referenced by: cpcolld 44227 grucollcld 44229 |
Copyright terms: Public domain | W3C validator |