Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > elscottab | Structured version Visualization version GIF version |
Description: An element of the output of the Scott operation applied to a class abstraction satisfies the class abstraction's predicate. (Contributed by Rohan Ridenour, 14-Aug-2023.) |
Ref | Expression |
---|---|
elscottab.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
elscottab | ⊢ (𝑦 ∈ Scott {𝑥 ∣ 𝜑} → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | scottss 41750 | . . 3 ⊢ Scott {𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜑} | |
2 | 1 | sseli 3913 | . 2 ⊢ (𝑦 ∈ Scott {𝑥 ∣ 𝜑} → 𝑦 ∈ {𝑥 ∣ 𝜑}) |
3 | vex 3426 | . . 3 ⊢ 𝑦 ∈ V | |
4 | elscottab.1 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
5 | 3, 4 | elab 3602 | . 2 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓) |
6 | 2, 5 | sylib 217 | 1 ⊢ (𝑦 ∈ Scott {𝑥 ∣ 𝜑} → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2108 {cab 2715 Scott cscott 41742 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-in 3890 df-ss 3900 df-scott 41743 |
This theorem is referenced by: cpcolld 41765 grucollcld 41767 |
Copyright terms: Public domain | W3C validator |