| Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elscottab | Structured version Visualization version GIF version | ||
| Description: An element of the output of the Scott operation applied to a class abstraction satisfies the class abstraction's predicate. (Contributed by Rohan Ridenour, 14-Aug-2023.) |
| Ref | Expression |
|---|---|
| elscottab.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| elscottab | ⊢ (𝑦 ∈ Scott {𝑥 ∣ 𝜑} → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | scottss 44219 | . . 3 ⊢ Scott {𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜑} | |
| 2 | 1 | sseli 3959 | . 2 ⊢ (𝑦 ∈ Scott {𝑥 ∣ 𝜑} → 𝑦 ∈ {𝑥 ∣ 𝜑}) |
| 3 | vex 3467 | . . 3 ⊢ 𝑦 ∈ V | |
| 4 | elscottab.1 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 5 | 3, 4 | elab 3662 | . 2 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓) |
| 6 | 2, 5 | sylib 218 | 1 ⊢ (𝑦 ∈ Scott {𝑥 ∣ 𝜑} → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2107 {cab 2712 Scott cscott 44211 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3420 df-v 3465 df-ss 3948 df-scott 44212 |
| This theorem is referenced by: cpcolld 44234 grucollcld 44236 |
| Copyright terms: Public domain | W3C validator |