Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > elscottab | Structured version Visualization version GIF version |
Description: An element of the output of the Scott operation applied to a class abstraction satisfies the class abstraction's predicate. (Contributed by Rohan Ridenour, 14-Aug-2023.) |
Ref | Expression |
---|---|
elscottab.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
elscottab | ⊢ (𝑦 ∈ Scott {𝑥 ∣ 𝜑} → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | scottss 41562 | . . 3 ⊢ Scott {𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜑} | |
2 | 1 | sseli 3910 | . 2 ⊢ (𝑦 ∈ Scott {𝑥 ∣ 𝜑} → 𝑦 ∈ {𝑥 ∣ 𝜑}) |
3 | vex 3424 | . . 3 ⊢ 𝑦 ∈ V | |
4 | elscottab.1 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
5 | 3, 4 | elab 3599 | . 2 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓) |
6 | 2, 5 | sylib 221 | 1 ⊢ (𝑦 ∈ Scott {𝑥 ∣ 𝜑} → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∈ wcel 2111 {cab 2715 Scott cscott 41554 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-ext 2709 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1546 df-ex 1788 df-sb 2072 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3071 df-v 3422 df-in 3887 df-ss 3897 df-scott 41555 |
This theorem is referenced by: cpcolld 41577 grucollcld 41579 |
Copyright terms: Public domain | W3C validator |