MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp232 Structured version   Visualization version   GIF version

Theorem simp232 1317
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simp232 ((𝜂 ∧ (𝜃𝜏 ∧ (𝜑𝜓𝜒)) ∧ 𝜁) → 𝜓)

Proof of Theorem simp232
StepHypRef Expression
1 simp32 1209 . 2 ((𝜃𝜏 ∧ (𝜑𝜓𝜒)) → 𝜓)
213ad2ant2 1133 1 ((𝜂 ∧ (𝜃𝜏 ∧ (𝜑𝜓𝜒)) ∧ 𝜁) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088
This theorem is referenced by:  cdlemd3  38214  cdleme21ct  38343  cdleme21e  38345  cdleme21f  38346  cdleme21i  38349  cdleme26eALTN  38375  cdlemk23-3  38916  cdlemk25-3  38918
  Copyright terms: Public domain W3C validator