Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemd3 Structured version   Visualization version   GIF version

Theorem cdlemd3 38663
Description: Part of proof of Lemma D in [Crawley] p. 113. The 𝑅𝑃 requirement is not mentioned in their proof. (Contributed by NM, 29-May-2012.)
Hypotheses
Ref Expression
cdlemd3.l = (le‘𝐾)
cdlemd3.j = (join‘𝐾)
cdlemd3.a 𝐴 = (Atoms‘𝐾)
cdlemd3.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
cdlemd3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ 𝑅𝑃)) ∧ (𝑅𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) → ¬ 𝑅 (𝑃 𝑆))

Proof of Theorem cdlemd3
StepHypRef Expression
1 simp33 1211 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ 𝑅𝑃)) ∧ (𝑅𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) → ¬ 𝑆 (𝑃 𝑄))
2 simp1l 1197 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ 𝑅𝑃)) ∧ (𝑅𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝐾 ∈ HL)
3 simp31 1209 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ 𝑅𝑃)) ∧ (𝑅𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝑅𝐴)
4 simp32 1210 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ 𝑅𝑃)) ∧ (𝑅𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝑆𝐴)
5 simp21l 1290 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ 𝑅𝑃)) ∧ (𝑅𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝑃𝐴)
6 simp233 1319 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ 𝑅𝑃)) ∧ (𝑅𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝑅𝑃)
7 cdlemd3.l . . . . 5 = (le‘𝐾)
8 cdlemd3.j . . . . 5 = (join‘𝐾)
9 cdlemd3.a . . . . 5 𝐴 = (Atoms‘𝐾)
107, 8, 9hlatexch1 37858 . . . 4 ((𝐾 ∈ HL ∧ (𝑅𝐴𝑆𝐴𝑃𝐴) ∧ 𝑅𝑃) → (𝑅 (𝑃 𝑆) → 𝑆 (𝑃 𝑅)))
112, 3, 4, 5, 6, 10syl131anc 1383 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ 𝑅𝑃)) ∧ (𝑅𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) → (𝑅 (𝑃 𝑆) → 𝑆 (𝑃 𝑅)))
12 simp22l 1292 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ 𝑅𝑃)) ∧ (𝑅𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝑄𝐴)
137, 8, 9hlatlej1 37837 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → 𝑃 (𝑃 𝑄))
142, 5, 12, 13syl3anc 1371 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ 𝑅𝑃)) ∧ (𝑅𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝑃 (𝑃 𝑄))
15 simp232 1318 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ 𝑅𝑃)) ∧ (𝑅𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝑅 (𝑃 𝑄))
162hllatd 37826 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ 𝑅𝑃)) ∧ (𝑅𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝐾 ∈ Lat)
17 eqid 2736 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
1817, 9atbase 37751 . . . . . . 7 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
195, 18syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ 𝑅𝑃)) ∧ (𝑅𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝑃 ∈ (Base‘𝐾))
2017, 9atbase 37751 . . . . . . 7 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
213, 20syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ 𝑅𝑃)) ∧ (𝑅𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝑅 ∈ (Base‘𝐾))
2217, 9atbase 37751 . . . . . . . 8 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
2312, 22syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ 𝑅𝑃)) ∧ (𝑅𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝑄 ∈ (Base‘𝐾))
2417, 8latjcl 18328 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → (𝑃 𝑄) ∈ (Base‘𝐾))
2516, 19, 23, 24syl3anc 1371 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ 𝑅𝑃)) ∧ (𝑅𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) → (𝑃 𝑄) ∈ (Base‘𝐾))
2617, 7, 8latjle12 18339 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾))) → ((𝑃 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄)) ↔ (𝑃 𝑅) (𝑃 𝑄)))
2716, 19, 21, 25, 26syl13anc 1372 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ 𝑅𝑃)) ∧ (𝑅𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) → ((𝑃 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄)) ↔ (𝑃 𝑅) (𝑃 𝑄)))
2814, 15, 27mpbi2and 710 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ 𝑅𝑃)) ∧ (𝑅𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) → (𝑃 𝑅) (𝑃 𝑄))
2917, 9atbase 37751 . . . . . 6 (𝑆𝐴𝑆 ∈ (Base‘𝐾))
304, 29syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ 𝑅𝑃)) ∧ (𝑅𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝑆 ∈ (Base‘𝐾))
3117, 8latjcl 18328 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) → (𝑃 𝑅) ∈ (Base‘𝐾))
3216, 19, 21, 31syl3anc 1371 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ 𝑅𝑃)) ∧ (𝑅𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) → (𝑃 𝑅) ∈ (Base‘𝐾))
3317, 7lattr 18333 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑆 ∈ (Base‘𝐾) ∧ (𝑃 𝑅) ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾))) → ((𝑆 (𝑃 𝑅) ∧ (𝑃 𝑅) (𝑃 𝑄)) → 𝑆 (𝑃 𝑄)))
3416, 30, 32, 25, 33syl13anc 1372 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ 𝑅𝑃)) ∧ (𝑅𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) → ((𝑆 (𝑃 𝑅) ∧ (𝑃 𝑅) (𝑃 𝑄)) → 𝑆 (𝑃 𝑄)))
3528, 34mpan2d 692 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ 𝑅𝑃)) ∧ (𝑅𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) → (𝑆 (𝑃 𝑅) → 𝑆 (𝑃 𝑄)))
3611, 35syld 47 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ 𝑅𝑃)) ∧ (𝑅𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) → (𝑅 (𝑃 𝑆) → 𝑆 (𝑃 𝑄)))
371, 36mtod 197 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ 𝑅𝑃)) ∧ (𝑅𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) → ¬ 𝑅 (𝑃 𝑆))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943   class class class wbr 5105  cfv 6496  (class class class)co 7357  Basecbs 17083  lecple 17140  joincjn 18200  Latclat 18320  Atomscatm 37725  HLchlt 37812  LHypclh 38447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-proset 18184  df-poset 18202  df-plt 18219  df-lub 18235  df-glb 18236  df-join 18237  df-meet 18238  df-p0 18314  df-lat 18321  df-covers 37728  df-ats 37729  df-atl 37760  df-cvlat 37784  df-hlat 37813
This theorem is referenced by:  cdlemd4  38664
  Copyright terms: Public domain W3C validator