Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemd3 Structured version   Visualization version   GIF version

Theorem cdlemd3 38214
Description: Part of proof of Lemma D in [Crawley] p. 113. The 𝑅𝑃 requirement is not mentioned in their proof. (Contributed by NM, 29-May-2012.)
Hypotheses
Ref Expression
cdlemd3.l = (le‘𝐾)
cdlemd3.j = (join‘𝐾)
cdlemd3.a 𝐴 = (Atoms‘𝐾)
cdlemd3.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
cdlemd3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ 𝑅𝑃)) ∧ (𝑅𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) → ¬ 𝑅 (𝑃 𝑆))

Proof of Theorem cdlemd3
StepHypRef Expression
1 simp33 1210 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ 𝑅𝑃)) ∧ (𝑅𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) → ¬ 𝑆 (𝑃 𝑄))
2 simp1l 1196 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ 𝑅𝑃)) ∧ (𝑅𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝐾 ∈ HL)
3 simp31 1208 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ 𝑅𝑃)) ∧ (𝑅𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝑅𝐴)
4 simp32 1209 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ 𝑅𝑃)) ∧ (𝑅𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝑆𝐴)
5 simp21l 1289 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ 𝑅𝑃)) ∧ (𝑅𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝑃𝐴)
6 simp233 1318 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ 𝑅𝑃)) ∧ (𝑅𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝑅𝑃)
7 cdlemd3.l . . . . 5 = (le‘𝐾)
8 cdlemd3.j . . . . 5 = (join‘𝐾)
9 cdlemd3.a . . . . 5 𝐴 = (Atoms‘𝐾)
107, 8, 9hlatexch1 37409 . . . 4 ((𝐾 ∈ HL ∧ (𝑅𝐴𝑆𝐴𝑃𝐴) ∧ 𝑅𝑃) → (𝑅 (𝑃 𝑆) → 𝑆 (𝑃 𝑅)))
112, 3, 4, 5, 6, 10syl131anc 1382 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ 𝑅𝑃)) ∧ (𝑅𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) → (𝑅 (𝑃 𝑆) → 𝑆 (𝑃 𝑅)))
12 simp22l 1291 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ 𝑅𝑃)) ∧ (𝑅𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝑄𝐴)
137, 8, 9hlatlej1 37389 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → 𝑃 (𝑃 𝑄))
142, 5, 12, 13syl3anc 1370 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ 𝑅𝑃)) ∧ (𝑅𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝑃 (𝑃 𝑄))
15 simp232 1317 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ 𝑅𝑃)) ∧ (𝑅𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝑅 (𝑃 𝑄))
162hllatd 37378 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ 𝑅𝑃)) ∧ (𝑅𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝐾 ∈ Lat)
17 eqid 2738 . . . . . . . 8 (Base‘𝐾) = (Base‘𝐾)
1817, 9atbase 37303 . . . . . . 7 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
195, 18syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ 𝑅𝑃)) ∧ (𝑅𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝑃 ∈ (Base‘𝐾))
2017, 9atbase 37303 . . . . . . 7 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
213, 20syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ 𝑅𝑃)) ∧ (𝑅𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝑅 ∈ (Base‘𝐾))
2217, 9atbase 37303 . . . . . . . 8 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
2312, 22syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ 𝑅𝑃)) ∧ (𝑅𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝑄 ∈ (Base‘𝐾))
2417, 8latjcl 18157 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → (𝑃 𝑄) ∈ (Base‘𝐾))
2516, 19, 23, 24syl3anc 1370 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ 𝑅𝑃)) ∧ (𝑅𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) → (𝑃 𝑄) ∈ (Base‘𝐾))
2617, 7, 8latjle12 18168 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾))) → ((𝑃 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄)) ↔ (𝑃 𝑅) (𝑃 𝑄)))
2716, 19, 21, 25, 26syl13anc 1371 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ 𝑅𝑃)) ∧ (𝑅𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) → ((𝑃 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄)) ↔ (𝑃 𝑅) (𝑃 𝑄)))
2814, 15, 27mpbi2and 709 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ 𝑅𝑃)) ∧ (𝑅𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) → (𝑃 𝑅) (𝑃 𝑄))
2917, 9atbase 37303 . . . . . 6 (𝑆𝐴𝑆 ∈ (Base‘𝐾))
304, 29syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ 𝑅𝑃)) ∧ (𝑅𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝑆 ∈ (Base‘𝐾))
3117, 8latjcl 18157 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) → (𝑃 𝑅) ∈ (Base‘𝐾))
3216, 19, 21, 31syl3anc 1370 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ 𝑅𝑃)) ∧ (𝑅𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) → (𝑃 𝑅) ∈ (Base‘𝐾))
3317, 7lattr 18162 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑆 ∈ (Base‘𝐾) ∧ (𝑃 𝑅) ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾))) → ((𝑆 (𝑃 𝑅) ∧ (𝑃 𝑅) (𝑃 𝑄)) → 𝑆 (𝑃 𝑄)))
3416, 30, 32, 25, 33syl13anc 1371 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ 𝑅𝑃)) ∧ (𝑅𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) → ((𝑆 (𝑃 𝑅) ∧ (𝑃 𝑅) (𝑃 𝑄)) → 𝑆 (𝑃 𝑄)))
3528, 34mpan2d 691 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ 𝑅𝑃)) ∧ (𝑅𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) → (𝑆 (𝑃 𝑅) → 𝑆 (𝑃 𝑄)))
3611, 35syld 47 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ 𝑅𝑃)) ∧ (𝑅𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) → (𝑅 (𝑃 𝑆) → 𝑆 (𝑃 𝑄)))
371, 36mtod 197 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑃𝑄𝑅 (𝑃 𝑄) ∧ 𝑅𝑃)) ∧ (𝑅𝐴𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄))) → ¬ 𝑅 (𝑃 𝑆))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943   class class class wbr 5074  cfv 6433  (class class class)co 7275  Basecbs 16912  lecple 16969  joincjn 18029  Latclat 18149  Atomscatm 37277  HLchlt 37364  LHypclh 37998
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-proset 18013  df-poset 18031  df-plt 18048  df-lub 18064  df-glb 18065  df-join 18066  df-meet 18067  df-p0 18143  df-lat 18150  df-covers 37280  df-ats 37281  df-atl 37312  df-cvlat 37336  df-hlat 37365
This theorem is referenced by:  cdlemd4  38215
  Copyright terms: Public domain W3C validator