Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme21ct Structured version   Visualization version   GIF version

Theorem cdleme21ct 38648
Description: Part of proof of Lemma E in [Crawley] p. 115. (Contributed by NM, 29-Nov-2012.)
Hypotheses
Ref Expression
cdleme21.l = (le‘𝐾)
cdleme21.j = (join‘𝐾)
cdleme21.m = (meet‘𝐾)
cdleme21.a 𝐴 = (Atoms‘𝐾)
cdleme21.h 𝐻 = (LHyp‘𝐾)
cdleme21.u 𝑈 = ((𝑃 𝑄) 𝑊)
Assertion
Ref Expression
cdleme21ct ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧))) → ¬ 𝑈 (𝑇 𝑧))

Proof of Theorem cdleme21ct
StepHypRef Expression
1 simp11 1203 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp12 1204 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
3 simp13 1205 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧))) → 𝑄𝐴)
4 simp21l 1290 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧))) → 𝑆𝐴)
5 simp231 1317 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧))) → 𝑃𝑄)
6 simp232 1318 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧))) → ¬ 𝑆 (𝑃 𝑄))
7 simp3ll 1244 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧))) → 𝑧𝐴)
8 simp3r 1202 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧))) → (𝑃 𝑧) = (𝑆 𝑧))
9 cdleme21.l . . . 4 = (le‘𝐾)
10 cdleme21.j . . . 4 = (join‘𝐾)
11 cdleme21.m . . . 4 = (meet‘𝐾)
12 cdleme21.a . . . 4 𝐴 = (Atoms‘𝐾)
13 cdleme21.h . . . 4 𝐻 = (LHyp‘𝐾)
14 cdleme21.u . . . 4 𝑈 = ((𝑃 𝑄) 𝑊)
159, 10, 11, 12, 13, 14cdleme21c 38646 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝑆𝐴𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ (𝑃 𝑧) = (𝑆 𝑧))) → ¬ 𝑈 (𝑆 𝑧))
161, 2, 3, 4, 5, 6, 7, 8, 15syl332anc 1401 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧))) → ¬ 𝑈 (𝑆 𝑧))
17 simp233 1319 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧))) → 𝑈 (𝑆 𝑇))
18 simp11l 1284 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧))) → 𝐾 ∈ HL)
19 hlcvl 37677 . . . . . . . . 9 (𝐾 ∈ HL → 𝐾 ∈ CvLat)
2018, 19syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧))) → 𝐾 ∈ CvLat)
21 simp11r 1285 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧))) → 𝑊𝐻)
22 simp12l 1286 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧))) → 𝑃𝐴)
23 simp12r 1287 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧))) → ¬ 𝑃 𝑊)
249, 10, 11, 12, 13, 14cdleme0a 38530 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄)) → 𝑈𝐴)
2518, 21, 22, 23, 3, 5, 24syl222anc 1386 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧))) → 𝑈𝐴)
26 simp22l 1292 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧))) → 𝑇𝐴)
2718hllatd 37682 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧))) → 𝐾 ∈ Lat)
28 eqid 2737 . . . . . . . . . . . . 13 (Base‘𝐾) = (Base‘𝐾)
2928, 10, 12hlatjcl 37685 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
3018, 22, 3, 29syl3anc 1371 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧))) → (𝑃 𝑄) ∈ (Base‘𝐾))
3128, 13lhpbase 38317 . . . . . . . . . . . 12 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
3221, 31syl 17 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧))) → 𝑊 ∈ (Base‘𝐾))
3328, 9, 11latmle2 18285 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑊) 𝑊)
3427, 30, 32, 33syl3anc 1371 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧))) → ((𝑃 𝑄) 𝑊) 𝑊)
3514, 34eqbrtrid 5135 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧))) → 𝑈 𝑊)
36 simp21r 1291 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧))) → ¬ 𝑆 𝑊)
37 nbrne2 5120 . . . . . . . . 9 ((𝑈 𝑊 ∧ ¬ 𝑆 𝑊) → 𝑈𝑆)
3835, 36, 37syl2anc 585 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧))) → 𝑈𝑆)
39 simp22r 1293 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧))) → ¬ 𝑇 𝑊)
40 nbrne2 5120 . . . . . . . . 9 ((𝑈 𝑊 ∧ ¬ 𝑇 𝑊) → 𝑈𝑇)
4135, 39, 40syl2anc 585 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧))) → 𝑈𝑇)
429, 10, 12cvlatexch3 37656 . . . . . . . 8 ((𝐾 ∈ CvLat ∧ (𝑈𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝑆𝑈𝑇)) → (𝑈 (𝑆 𝑇) → (𝑈 𝑆) = (𝑈 𝑇)))
4320, 25, 4, 26, 38, 41, 42syl132anc 1388 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧))) → (𝑈 (𝑆 𝑇) → (𝑈 𝑆) = (𝑈 𝑇)))
4417, 43mpd 15 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧))) → (𝑈 𝑆) = (𝑈 𝑇))
4544adantr 482 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧))) ∧ 𝑈 (𝑇 𝑧)) → (𝑈 𝑆) = (𝑈 𝑇))
46 simp3lr 1245 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧))) → ¬ 𝑧 𝑊)
47 nbrne2 5120 . . . . . . . 8 ((𝑈 𝑊 ∧ ¬ 𝑧 𝑊) → 𝑈𝑧)
4835, 46, 47syl2anc 585 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧))) → 𝑈𝑧)
499, 10, 12cvlatexch3 37656 . . . . . . 7 ((𝐾 ∈ CvLat ∧ (𝑈𝐴𝑇𝐴𝑧𝐴) ∧ (𝑈𝑇𝑈𝑧)) → (𝑈 (𝑇 𝑧) → (𝑈 𝑇) = (𝑈 𝑧)))
5020, 25, 26, 7, 41, 48, 49syl132anc 1388 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧))) → (𝑈 (𝑇 𝑧) → (𝑈 𝑇) = (𝑈 𝑧)))
5150imp 408 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧))) ∧ 𝑈 (𝑇 𝑧)) → (𝑈 𝑇) = (𝑈 𝑧))
5245, 51eqtrd 2777 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧))) ∧ 𝑈 (𝑇 𝑧)) → (𝑈 𝑆) = (𝑈 𝑧))
5352ex 414 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧))) → (𝑈 (𝑇 𝑧) → (𝑈 𝑆) = (𝑈 𝑧)))
549, 10, 12hlatlej2 37694 . . . . 5 ((𝐾 ∈ HL ∧ 𝑈𝐴𝑆𝐴) → 𝑆 (𝑈 𝑆))
5518, 25, 4, 54syl3anc 1371 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧))) → 𝑆 (𝑈 𝑆))
56 breq2 5104 . . . 4 ((𝑈 𝑆) = (𝑈 𝑧) → (𝑆 (𝑈 𝑆) ↔ 𝑆 (𝑈 𝑧)))
5755, 56syl5ibcom 245 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧))) → ((𝑈 𝑆) = (𝑈 𝑧) → 𝑆 (𝑈 𝑧)))
589, 10, 12cdleme21a 38644 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ (𝑃 𝑧) = (𝑆 𝑧))) → 𝑆𝑧)
5918, 22, 3, 4, 6, 7, 8, 58syl322anc 1398 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧))) → 𝑆𝑧)
609, 10, 12cvlatexch2 37655 . . . 4 ((𝐾 ∈ CvLat ∧ (𝑆𝐴𝑈𝐴𝑧𝐴) ∧ 𝑆𝑧) → (𝑆 (𝑈 𝑧) → 𝑈 (𝑆 𝑧)))
6120, 4, 25, 7, 59, 60syl131anc 1383 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧))) → (𝑆 (𝑈 𝑧) → 𝑈 (𝑆 𝑧)))
6253, 57, 613syld 60 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧))) → (𝑈 (𝑇 𝑧) → 𝑈 (𝑆 𝑧)))
6316, 62mtod 197 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧))) → ¬ 𝑈 (𝑇 𝑧))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397  w3a 1087   = wceq 1541  wcel 2106  wne 2941   class class class wbr 5100  cfv 6488  (class class class)co 7346  Basecbs 17014  lecple 17071  joincjn 18131  meetcmee 18132  Latclat 18251  Atomscatm 37581  CvLatclc 37583  HLchlt 37668  LHypclh 38303
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5237  ax-sep 5251  ax-nul 5258  ax-pow 5315  ax-pr 5379  ax-un 7659
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3735  df-csb 3851  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4278  df-if 4482  df-pw 4557  df-sn 4582  df-pr 4584  df-op 4588  df-uni 4861  df-iun 4951  df-br 5101  df-opab 5163  df-mpt 5184  df-id 5525  df-xp 5633  df-rel 5634  df-cnv 5635  df-co 5636  df-dm 5637  df-rn 5638  df-res 5639  df-ima 5640  df-iota 6440  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7302  df-ov 7349  df-oprab 7350  df-proset 18115  df-poset 18133  df-plt 18150  df-lub 18166  df-glb 18167  df-join 18168  df-meet 18169  df-p0 18245  df-p1 18246  df-lat 18252  df-clat 18319  df-oposet 37494  df-ol 37496  df-oml 37497  df-covers 37584  df-ats 37585  df-atl 37616  df-cvlat 37640  df-hlat 37669  df-lhyp 38307
This theorem is referenced by:  cdleme21e  38650
  Copyright terms: Public domain W3C validator