Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme21ct Structured version   Visualization version   GIF version

Theorem cdleme21ct 40323
Description: Part of proof of Lemma E in [Crawley] p. 115. (Contributed by NM, 29-Nov-2012.)
Hypotheses
Ref Expression
cdleme21.l = (le‘𝐾)
cdleme21.j = (join‘𝐾)
cdleme21.m = (meet‘𝐾)
cdleme21.a 𝐴 = (Atoms‘𝐾)
cdleme21.h 𝐻 = (LHyp‘𝐾)
cdleme21.u 𝑈 = ((𝑃 𝑄) 𝑊)
Assertion
Ref Expression
cdleme21ct ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧))) → ¬ 𝑈 (𝑇 𝑧))

Proof of Theorem cdleme21ct
StepHypRef Expression
1 simp11 1204 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp12 1205 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
3 simp13 1206 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧))) → 𝑄𝐴)
4 simp21l 1291 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧))) → 𝑆𝐴)
5 simp231 1318 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧))) → 𝑃𝑄)
6 simp232 1319 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧))) → ¬ 𝑆 (𝑃 𝑄))
7 simp3ll 1245 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧))) → 𝑧𝐴)
8 simp3r 1203 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧))) → (𝑃 𝑧) = (𝑆 𝑧))
9 cdleme21.l . . . 4 = (le‘𝐾)
10 cdleme21.j . . . 4 = (join‘𝐾)
11 cdleme21.m . . . 4 = (meet‘𝐾)
12 cdleme21.a . . . 4 𝐴 = (Atoms‘𝐾)
13 cdleme21.h . . . 4 𝐻 = (LHyp‘𝐾)
14 cdleme21.u . . . 4 𝑈 = ((𝑃 𝑄) 𝑊)
159, 10, 11, 12, 13, 14cdleme21c 40321 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ (𝑆𝐴𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ (𝑃 𝑧) = (𝑆 𝑧))) → ¬ 𝑈 (𝑆 𝑧))
161, 2, 3, 4, 5, 6, 7, 8, 15syl332anc 1403 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧))) → ¬ 𝑈 (𝑆 𝑧))
17 simp233 1320 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧))) → 𝑈 (𝑆 𝑇))
18 simp11l 1285 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧))) → 𝐾 ∈ HL)
19 hlcvl 39352 . . . . . . . . 9 (𝐾 ∈ HL → 𝐾 ∈ CvLat)
2018, 19syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧))) → 𝐾 ∈ CvLat)
21 simp11r 1286 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧))) → 𝑊𝐻)
22 simp12l 1287 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧))) → 𝑃𝐴)
23 simp12r 1288 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧))) → ¬ 𝑃 𝑊)
249, 10, 11, 12, 13, 14cdleme0a 40205 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄)) → 𝑈𝐴)
2518, 21, 22, 23, 3, 5, 24syl222anc 1388 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧))) → 𝑈𝐴)
26 simp22l 1293 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧))) → 𝑇𝐴)
2718hllatd 39357 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧))) → 𝐾 ∈ Lat)
28 eqid 2729 . . . . . . . . . . . . 13 (Base‘𝐾) = (Base‘𝐾)
2928, 10, 12hlatjcl 39360 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
3018, 22, 3, 29syl3anc 1373 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧))) → (𝑃 𝑄) ∈ (Base‘𝐾))
3128, 13lhpbase 39992 . . . . . . . . . . . 12 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
3221, 31syl 17 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧))) → 𝑊 ∈ (Base‘𝐾))
3328, 9, 11latmle2 18424 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑊) 𝑊)
3427, 30, 32, 33syl3anc 1373 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧))) → ((𝑃 𝑄) 𝑊) 𝑊)
3514, 34eqbrtrid 5142 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧))) → 𝑈 𝑊)
36 simp21r 1292 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧))) → ¬ 𝑆 𝑊)
37 nbrne2 5127 . . . . . . . . 9 ((𝑈 𝑊 ∧ ¬ 𝑆 𝑊) → 𝑈𝑆)
3835, 36, 37syl2anc 584 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧))) → 𝑈𝑆)
39 simp22r 1294 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧))) → ¬ 𝑇 𝑊)
40 nbrne2 5127 . . . . . . . . 9 ((𝑈 𝑊 ∧ ¬ 𝑇 𝑊) → 𝑈𝑇)
4135, 39, 40syl2anc 584 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧))) → 𝑈𝑇)
429, 10, 12cvlatexch3 39331 . . . . . . . 8 ((𝐾 ∈ CvLat ∧ (𝑈𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝑆𝑈𝑇)) → (𝑈 (𝑆 𝑇) → (𝑈 𝑆) = (𝑈 𝑇)))
4320, 25, 4, 26, 38, 41, 42syl132anc 1390 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧))) → (𝑈 (𝑆 𝑇) → (𝑈 𝑆) = (𝑈 𝑇)))
4417, 43mpd 15 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧))) → (𝑈 𝑆) = (𝑈 𝑇))
4544adantr 480 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧))) ∧ 𝑈 (𝑇 𝑧)) → (𝑈 𝑆) = (𝑈 𝑇))
46 simp3lr 1246 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧))) → ¬ 𝑧 𝑊)
47 nbrne2 5127 . . . . . . . 8 ((𝑈 𝑊 ∧ ¬ 𝑧 𝑊) → 𝑈𝑧)
4835, 46, 47syl2anc 584 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧))) → 𝑈𝑧)
499, 10, 12cvlatexch3 39331 . . . . . . 7 ((𝐾 ∈ CvLat ∧ (𝑈𝐴𝑇𝐴𝑧𝐴) ∧ (𝑈𝑇𝑈𝑧)) → (𝑈 (𝑇 𝑧) → (𝑈 𝑇) = (𝑈 𝑧)))
5020, 25, 26, 7, 41, 48, 49syl132anc 1390 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧))) → (𝑈 (𝑇 𝑧) → (𝑈 𝑇) = (𝑈 𝑧)))
5150imp 406 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧))) ∧ 𝑈 (𝑇 𝑧)) → (𝑈 𝑇) = (𝑈 𝑧))
5245, 51eqtrd 2764 . . . 4 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧))) ∧ 𝑈 (𝑇 𝑧)) → (𝑈 𝑆) = (𝑈 𝑧))
5352ex 412 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧))) → (𝑈 (𝑇 𝑧) → (𝑈 𝑆) = (𝑈 𝑧)))
549, 10, 12hlatlej2 39369 . . . . 5 ((𝐾 ∈ HL ∧ 𝑈𝐴𝑆𝐴) → 𝑆 (𝑈 𝑆))
5518, 25, 4, 54syl3anc 1373 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧))) → 𝑆 (𝑈 𝑆))
56 breq2 5111 . . . 4 ((𝑈 𝑆) = (𝑈 𝑧) → (𝑆 (𝑈 𝑆) ↔ 𝑆 (𝑈 𝑧)))
5755, 56syl5ibcom 245 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧))) → ((𝑈 𝑆) = (𝑈 𝑧) → 𝑆 (𝑈 𝑧)))
589, 10, 12cdleme21a 40319 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ (𝑃 𝑧) = (𝑆 𝑧))) → 𝑆𝑧)
5918, 22, 3, 4, 6, 7, 8, 58syl322anc 1400 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧))) → 𝑆𝑧)
609, 10, 12cvlatexch2 39330 . . . 4 ((𝐾 ∈ CvLat ∧ (𝑆𝐴𝑈𝐴𝑧𝐴) ∧ 𝑆𝑧) → (𝑆 (𝑈 𝑧) → 𝑈 (𝑆 𝑧)))
6120, 4, 25, 7, 59, 60syl131anc 1385 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧))) → (𝑆 (𝑈 𝑧) → 𝑈 (𝑆 𝑧)))
6253, 57, 613syld 60 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧))) → (𝑈 (𝑇 𝑧) → 𝑈 (𝑆 𝑧)))
6316, 62mtod 198 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧))) → ¬ 𝑈 (𝑇 𝑧))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5107  cfv 6511  (class class class)co 7387  Basecbs 17179  lecple 17227  joincjn 18272  meetcmee 18273  Latclat 18390  Atomscatm 39256  CvLatclc 39258  HLchlt 39343  LHypclh 39978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-proset 18255  df-poset 18274  df-plt 18289  df-lub 18305  df-glb 18306  df-join 18307  df-meet 18308  df-p0 18384  df-p1 18385  df-lat 18391  df-clat 18458  df-oposet 39169  df-ol 39171  df-oml 39172  df-covers 39259  df-ats 39260  df-atl 39291  df-cvlat 39315  df-hlat 39344  df-lhyp 39982
This theorem is referenced by:  cdleme21e  40325
  Copyright terms: Public domain W3C validator