Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme21ct Structured version   Visualization version   GIF version

Theorem cdleme21ct 39713
Description: Part of proof of Lemma E in [Crawley] p. 115. (Contributed by NM, 29-Nov-2012.)
Hypotheses
Ref Expression
cdleme21.l ≀ = (leβ€˜πΎ)
cdleme21.j ∨ = (joinβ€˜πΎ)
cdleme21.m ∧ = (meetβ€˜πΎ)
cdleme21.a 𝐴 = (Atomsβ€˜πΎ)
cdleme21.h 𝐻 = (LHypβ€˜πΎ)
cdleme21.u π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
Assertion
Ref Expression
cdleme21ct ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) ∧ ((𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧))) β†’ Β¬ π‘ˆ ≀ (𝑇 ∨ 𝑧))

Proof of Theorem cdleme21ct
StepHypRef Expression
1 simp11 1200 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) ∧ ((𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧))) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
2 simp12 1201 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) ∧ ((𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧))) β†’ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))
3 simp13 1202 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) ∧ ((𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧))) β†’ 𝑄 ∈ 𝐴)
4 simp21l 1287 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) ∧ ((𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧))) β†’ 𝑆 ∈ 𝐴)
5 simp231 1314 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) ∧ ((𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧))) β†’ 𝑃 β‰  𝑄)
6 simp232 1315 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) ∧ ((𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧))) β†’ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))
7 simp3ll 1241 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) ∧ ((𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧))) β†’ 𝑧 ∈ 𝐴)
8 simp3r 1199 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) ∧ ((𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧))) β†’ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧))
9 cdleme21.l . . . 4 ≀ = (leβ€˜πΎ)
10 cdleme21.j . . . 4 ∨ = (joinβ€˜πΎ)
11 cdleme21.m . . . 4 ∧ = (meetβ€˜πΎ)
12 cdleme21.a . . . 4 𝐴 = (Atomsβ€˜πΎ)
13 cdleme21.h . . . 4 𝐻 = (LHypβ€˜πΎ)
14 cdleme21.u . . . 4 π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
159, 10, 11, 12, 13, 14cdleme21c 39711 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧))) β†’ Β¬ π‘ˆ ≀ (𝑆 ∨ 𝑧))
161, 2, 3, 4, 5, 6, 7, 8, 15syl332anc 1398 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) ∧ ((𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧))) β†’ Β¬ π‘ˆ ≀ (𝑆 ∨ 𝑧))
17 simp233 1316 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) ∧ ((𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧))) β†’ π‘ˆ ≀ (𝑆 ∨ 𝑇))
18 simp11l 1281 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) ∧ ((𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧))) β†’ 𝐾 ∈ HL)
19 hlcvl 38742 . . . . . . . . 9 (𝐾 ∈ HL β†’ 𝐾 ∈ CvLat)
2018, 19syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) ∧ ((𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧))) β†’ 𝐾 ∈ CvLat)
21 simp11r 1282 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) ∧ ((𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧))) β†’ π‘Š ∈ 𝐻)
22 simp12l 1283 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) ∧ ((𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧))) β†’ 𝑃 ∈ 𝐴)
23 simp12r 1284 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) ∧ ((𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧))) β†’ Β¬ 𝑃 ≀ π‘Š)
249, 10, 11, 12, 13, 14cdleme0a 39595 . . . . . . . . 9 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ 𝑃 β‰  𝑄)) β†’ π‘ˆ ∈ 𝐴)
2518, 21, 22, 23, 3, 5, 24syl222anc 1383 . . . . . . . 8 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) ∧ ((𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧))) β†’ π‘ˆ ∈ 𝐴)
26 simp22l 1289 . . . . . . . 8 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) ∧ ((𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧))) β†’ 𝑇 ∈ 𝐴)
2718hllatd 38747 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) ∧ ((𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧))) β†’ 𝐾 ∈ Lat)
28 eqid 2726 . . . . . . . . . . . . 13 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
2928, 10, 12hlatjcl 38750 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) β†’ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ))
3018, 22, 3, 29syl3anc 1368 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) ∧ ((𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧))) β†’ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ))
3128, 13lhpbase 39382 . . . . . . . . . . . 12 (π‘Š ∈ 𝐻 β†’ π‘Š ∈ (Baseβ€˜πΎ))
3221, 31syl 17 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) ∧ ((𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧))) β†’ π‘Š ∈ (Baseβ€˜πΎ))
3328, 9, 11latmle2 18430 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ) ∧ π‘Š ∈ (Baseβ€˜πΎ)) β†’ ((𝑃 ∨ 𝑄) ∧ π‘Š) ≀ π‘Š)
3427, 30, 32, 33syl3anc 1368 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) ∧ ((𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧))) β†’ ((𝑃 ∨ 𝑄) ∧ π‘Š) ≀ π‘Š)
3514, 34eqbrtrid 5176 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) ∧ ((𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧))) β†’ π‘ˆ ≀ π‘Š)
36 simp21r 1288 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) ∧ ((𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧))) β†’ Β¬ 𝑆 ≀ π‘Š)
37 nbrne2 5161 . . . . . . . . 9 ((π‘ˆ ≀ π‘Š ∧ Β¬ 𝑆 ≀ π‘Š) β†’ π‘ˆ β‰  𝑆)
3835, 36, 37syl2anc 583 . . . . . . . 8 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) ∧ ((𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧))) β†’ π‘ˆ β‰  𝑆)
39 simp22r 1290 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) ∧ ((𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧))) β†’ Β¬ 𝑇 ≀ π‘Š)
40 nbrne2 5161 . . . . . . . . 9 ((π‘ˆ ≀ π‘Š ∧ Β¬ 𝑇 ≀ π‘Š) β†’ π‘ˆ β‰  𝑇)
4135, 39, 40syl2anc 583 . . . . . . . 8 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) ∧ ((𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧))) β†’ π‘ˆ β‰  𝑇)
429, 10, 12cvlatexch3 38721 . . . . . . . 8 ((𝐾 ∈ CvLat ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ β‰  𝑆 ∧ π‘ˆ β‰  𝑇)) β†’ (π‘ˆ ≀ (𝑆 ∨ 𝑇) β†’ (π‘ˆ ∨ 𝑆) = (π‘ˆ ∨ 𝑇)))
4320, 25, 4, 26, 38, 41, 42syl132anc 1385 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) ∧ ((𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧))) β†’ (π‘ˆ ≀ (𝑆 ∨ 𝑇) β†’ (π‘ˆ ∨ 𝑆) = (π‘ˆ ∨ 𝑇)))
4417, 43mpd 15 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) ∧ ((𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧))) β†’ (π‘ˆ ∨ 𝑆) = (π‘ˆ ∨ 𝑇))
4544adantr 480 . . . . 5 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) ∧ ((𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧))) ∧ π‘ˆ ≀ (𝑇 ∨ 𝑧)) β†’ (π‘ˆ ∨ 𝑆) = (π‘ˆ ∨ 𝑇))
46 simp3lr 1242 . . . . . . . 8 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) ∧ ((𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧))) β†’ Β¬ 𝑧 ≀ π‘Š)
47 nbrne2 5161 . . . . . . . 8 ((π‘ˆ ≀ π‘Š ∧ Β¬ 𝑧 ≀ π‘Š) β†’ π‘ˆ β‰  𝑧)
4835, 46, 47syl2anc 583 . . . . . . 7 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) ∧ ((𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧))) β†’ π‘ˆ β‰  𝑧)
499, 10, 12cvlatexch3 38721 . . . . . . 7 ((𝐾 ∈ CvLat ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ (π‘ˆ β‰  𝑇 ∧ π‘ˆ β‰  𝑧)) β†’ (π‘ˆ ≀ (𝑇 ∨ 𝑧) β†’ (π‘ˆ ∨ 𝑇) = (π‘ˆ ∨ 𝑧)))
5020, 25, 26, 7, 41, 48, 49syl132anc 1385 . . . . . 6 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) ∧ ((𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧))) β†’ (π‘ˆ ≀ (𝑇 ∨ 𝑧) β†’ (π‘ˆ ∨ 𝑇) = (π‘ˆ ∨ 𝑧)))
5150imp 406 . . . . 5 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) ∧ ((𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧))) ∧ π‘ˆ ≀ (𝑇 ∨ 𝑧)) β†’ (π‘ˆ ∨ 𝑇) = (π‘ˆ ∨ 𝑧))
5245, 51eqtrd 2766 . . . 4 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) ∧ ((𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧))) ∧ π‘ˆ ≀ (𝑇 ∨ 𝑧)) β†’ (π‘ˆ ∨ 𝑆) = (π‘ˆ ∨ 𝑧))
5352ex 412 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) ∧ ((𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧))) β†’ (π‘ˆ ≀ (𝑇 ∨ 𝑧) β†’ (π‘ˆ ∨ 𝑆) = (π‘ˆ ∨ 𝑧)))
549, 10, 12hlatlej2 38759 . . . . 5 ((𝐾 ∈ HL ∧ π‘ˆ ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) β†’ 𝑆 ≀ (π‘ˆ ∨ 𝑆))
5518, 25, 4, 54syl3anc 1368 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) ∧ ((𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧))) β†’ 𝑆 ≀ (π‘ˆ ∨ 𝑆))
56 breq2 5145 . . . 4 ((π‘ˆ ∨ 𝑆) = (π‘ˆ ∨ 𝑧) β†’ (𝑆 ≀ (π‘ˆ ∨ 𝑆) ↔ 𝑆 ≀ (π‘ˆ ∨ 𝑧)))
5755, 56syl5ibcom 244 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) ∧ ((𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧))) β†’ ((π‘ˆ ∨ 𝑆) = (π‘ˆ ∨ 𝑧) β†’ 𝑆 ≀ (π‘ˆ ∨ 𝑧)))
589, 10, 12cdleme21a 39709 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄)) ∧ (𝑧 ∈ 𝐴 ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧))) β†’ 𝑆 β‰  𝑧)
5918, 22, 3, 4, 6, 7, 8, 58syl322anc 1395 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) ∧ ((𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧))) β†’ 𝑆 β‰  𝑧)
609, 10, 12cvlatexch2 38720 . . . 4 ((𝐾 ∈ CvLat ∧ (𝑆 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ 𝑆 β‰  𝑧) β†’ (𝑆 ≀ (π‘ˆ ∨ 𝑧) β†’ π‘ˆ ≀ (𝑆 ∨ 𝑧)))
6120, 4, 25, 7, 59, 60syl131anc 1380 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) ∧ ((𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧))) β†’ (𝑆 ≀ (π‘ˆ ∨ 𝑧) β†’ π‘ˆ ≀ (𝑆 ∨ 𝑧)))
6253, 57, 613syld 60 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) ∧ ((𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧))) β†’ (π‘ˆ ≀ (𝑇 ∨ 𝑧) β†’ π‘ˆ ≀ (𝑆 ∨ 𝑧)))
6316, 62mtod 197 1 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ Β¬ 𝑆 ≀ π‘Š) ∧ (𝑇 ∈ 𝐴 ∧ Β¬ 𝑇 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄) ∧ π‘ˆ ≀ (𝑆 ∨ 𝑇))) ∧ ((𝑧 ∈ 𝐴 ∧ Β¬ 𝑧 ≀ π‘Š) ∧ (𝑃 ∨ 𝑧) = (𝑆 ∨ 𝑧))) β†’ Β¬ π‘ˆ ≀ (𝑇 ∨ 𝑧))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2934   class class class wbr 5141  β€˜cfv 6537  (class class class)co 7405  Basecbs 17153  lecple 17213  joincjn 18276  meetcmee 18277  Latclat 18396  Atomscatm 38646  CvLatclc 38648  HLchlt 38733  LHypclh 39368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-proset 18260  df-poset 18278  df-plt 18295  df-lub 18311  df-glb 18312  df-join 18313  df-meet 18314  df-p0 18390  df-p1 18391  df-lat 18397  df-clat 18464  df-oposet 38559  df-ol 38561  df-oml 38562  df-covers 38649  df-ats 38650  df-atl 38681  df-cvlat 38705  df-hlat 38734  df-lhyp 39372
This theorem is referenced by:  cdleme21e  39715
  Copyright terms: Public domain W3C validator