Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme21e Structured version   Visualization version   GIF version

Theorem cdleme21e 39658
Description: Part of proof of Lemma E in [Crawley] p. 113, last paragraph on p. 115, 3rd line. 𝑌, 𝐺, 𝑂, 𝐸, 𝐵, 𝑍 represent s2, f(s), fs(r), z2, f(z), fz(r) respectively. We prove that if u s z, then ft(r) = fz(r). (Contributed by NM, 29-Nov-2012.)
Hypotheses
Ref Expression
cdleme21.l = (le‘𝐾)
cdleme21.j = (join‘𝐾)
cdleme21.m = (meet‘𝐾)
cdleme21.a 𝐴 = (Atoms‘𝐾)
cdleme21.h 𝐻 = (LHyp‘𝐾)
cdleme21.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme21.f 𝐹 = ((𝑆 𝑈) (𝑄 ((𝑃 𝑆) 𝑊)))
cdleme21.b 𝐵 = ((𝑧 𝑈) (𝑄 ((𝑃 𝑧) 𝑊)))
cdleme21.d 𝐷 = ((𝑅 𝑆) 𝑊)
cdleme21.e 𝐸 = ((𝑅 𝑧) 𝑊)
cdleme21d.n 𝑁 = ((𝑃 𝑄) (𝐹 𝐷))
cdleme21d.z 𝑍 = ((𝑃 𝑄) (𝐵 𝐸))
cdleme21.g 𝐺 = ((𝑇 𝑈) (𝑄 ((𝑃 𝑇) 𝑊)))
cdleme21.y 𝑌 = ((𝑅 𝑇) 𝑊)
cdleme21.o 𝑂 = ((𝑃 𝑄) (𝐺 𝑌))
Assertion
Ref Expression
cdleme21e ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄))) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇)) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧)))) → 𝑂 = 𝑍)

Proof of Theorem cdleme21e
StepHypRef Expression
1 simp11 1200 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄))) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇)) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧)))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp12 1201 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄))) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇)) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧)))) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
3 simp13 1202 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄))) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇)) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧)))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
4 simp31 1206 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄))) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇)) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧)))) → (𝑅𝐴 ∧ ¬ 𝑅 𝑊))
5 simp22 1204 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄))) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇)) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧)))) → (𝑇𝐴 ∧ ¬ 𝑇 𝑊))
6 simp33l 1297 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄))) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇)) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧)))) → (𝑧𝐴 ∧ ¬ 𝑧 𝑊))
7 simp231 1314 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄))) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇)) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧)))) → 𝑃𝑄)
8 simp13l 1285 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄))) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇)) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧)))) → 𝑄𝐴)
9 simp21l 1287 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄))) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇)) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧)))) → 𝑆𝐴)
10 simp232 1315 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄))) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇)) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧)))) → ¬ 𝑆 (𝑃 𝑄))
119, 7, 103jca 1125 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄))) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇)) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧)))) → (𝑆𝐴𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)))
12 simp32r 1296 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄))) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇)) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧)))) → 𝑈 (𝑆 𝑇))
136simpld 494 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄))) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇)) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧)))) → 𝑧𝐴)
14 simp33r 1298 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄))) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇)) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧)))) → (𝑃 𝑧) = (𝑆 𝑧))
15 cdleme21.l . . . . 5 = (le‘𝐾)
16 cdleme21.j . . . . 5 = (join‘𝐾)
17 cdleme21.m . . . . 5 = (meet‘𝐾)
18 cdleme21.a . . . . 5 𝐴 = (Atoms‘𝐾)
19 cdleme21.h . . . . 5 𝐻 = (LHyp‘𝐾)
20 cdleme21.u . . . . 5 𝑈 = ((𝑃 𝑄) 𝑊)
2115, 16, 17, 18, 19, 20cdleme21at 39655 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ 𝑈 (𝑆 𝑇)) ∧ (𝑧𝐴 ∧ (𝑃 𝑧) = (𝑆 𝑧))) → 𝑇𝑧)
221, 2, 8, 11, 12, 13, 14, 21syl322anc 1395 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄))) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇)) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧)))) → 𝑇𝑧)
237, 22jca 511 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄))) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇)) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧)))) → (𝑃𝑄𝑇𝑧))
24 simp233 1316 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄))) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇)) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧)))) → ¬ 𝑇 (𝑃 𝑄))
25 simp11l 1281 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄))) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇)) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧)))) → 𝐾 ∈ HL)
26 simp12l 1283 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄))) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇)) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧)))) → 𝑃𝐴)
2715, 16, 18cdleme21b 39653 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑆𝐴𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄)) ∧ (𝑧𝐴 ∧ (𝑃 𝑧) = (𝑆 𝑧))) → ¬ 𝑧 (𝑃 𝑄))
2825, 26, 8, 9, 7, 10, 13, 14, 27syl332anc 1398 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄))) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇)) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧)))) → ¬ 𝑧 (𝑃 𝑄))
29 simp32l 1295 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄))) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇)) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧)))) → 𝑅 (𝑃 𝑄))
3024, 28, 293jca 1125 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄))) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇)) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧)))) → (¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑧 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄)))
31 simp21 1203 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄))) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇)) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧)))) → (𝑆𝐴 ∧ ¬ 𝑆 𝑊))
327, 10, 123jca 1125 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄))) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇)) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧)))) → (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇)))
3315, 16, 17, 18, 19, 20cdleme21ct 39656 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑄𝐴) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇))) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧))) → ¬ 𝑈 (𝑇 𝑧))
341, 2, 8, 31, 5, 32, 6, 14, 33syl332anc 1398 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄))) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇)) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧)))) → ¬ 𝑈 (𝑇 𝑧))
35 cdleme21.g . . 3 𝐺 = ((𝑇 𝑈) (𝑄 ((𝑃 𝑇) 𝑊)))
36 cdleme21.b . . 3 𝐵 = ((𝑧 𝑈) (𝑄 ((𝑃 𝑧) 𝑊)))
37 cdleme21.y . . 3 𝑌 = ((𝑅 𝑇) 𝑊)
38 cdleme21.e . . 3 𝐸 = ((𝑅 𝑧) 𝑊)
39 eqid 2724 . . 3 ((𝑇 𝑧) 𝑊) = ((𝑇 𝑧) 𝑊)
40 cdleme21.o . . 3 𝑂 = ((𝑃 𝑄) (𝐺 𝑌))
41 cdleme21d.z . . 3 𝑍 = ((𝑃 𝑄) (𝐵 𝐸))
4215, 16, 17, 18, 19, 20, 35, 36, 37, 38, 39, 40, 41cdleme20 39651 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑧𝐴 ∧ ¬ 𝑧 𝑊)) ∧ ((𝑃𝑄𝑇𝑧) ∧ (¬ 𝑇 (𝑃 𝑄) ∧ ¬ 𝑧 (𝑃 𝑄) ∧ 𝑅 (𝑃 𝑄)) ∧ ¬ 𝑈 (𝑇 𝑧))) → 𝑂 = 𝑍)
431, 2, 3, 4, 5, 6, 23, 30, 34, 42syl333anc 1399 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ ((𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ (𝑇𝐴 ∧ ¬ 𝑇 𝑊) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄) ∧ ¬ 𝑇 (𝑃 𝑄))) ∧ ((𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑅 (𝑃 𝑄) ∧ 𝑈 (𝑆 𝑇)) ∧ ((𝑧𝐴 ∧ ¬ 𝑧 𝑊) ∧ (𝑃 𝑧) = (𝑆 𝑧)))) → 𝑂 = 𝑍)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1084   = wceq 1533  wcel 2098  wne 2932   class class class wbr 5138  cfv 6533  (class class class)co 7401  lecple 17200  joincjn 18263  meetcmee 18264  Atomscatm 38589  HLchlt 38676  LHypclh 39311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-iin 4990  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-1st 7968  df-2nd 7969  df-proset 18247  df-poset 18265  df-plt 18282  df-lub 18298  df-glb 18299  df-join 18300  df-meet 18301  df-p0 18377  df-p1 18378  df-lat 18384  df-clat 18451  df-oposet 38502  df-ol 38504  df-oml 38505  df-covers 38592  df-ats 38593  df-atl 38624  df-cvlat 38648  df-hlat 38677  df-llines 38825  df-lplanes 38826  df-lvols 38827  df-lines 38828  df-psubsp 38830  df-pmap 38831  df-padd 39123  df-lhyp 39315
This theorem is referenced by:  cdleme21f  39659
  Copyright terms: Public domain W3C validator