Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ss2ab1 Structured version   Visualization version   GIF version

Theorem ss2ab1 42231
Description: Class abstractions in a subclass relationship, closed form. One direction of ss2ab 4011 using fewer axioms. (Contributed by SN, 22-Dec-2024.)
Assertion
Ref Expression
ss2ab1 (∀𝑥(𝜑𝜓) → {𝑥𝜑} ⊆ {𝑥𝜓})

Proof of Theorem ss2ab1
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 spsbim 2074 . . 3 (∀𝑥(𝜑𝜓) → ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓))
2 df-clab 2709 . . 3 (𝑡 ∈ {𝑥𝜑} ↔ [𝑡 / 𝑥]𝜑)
3 df-clab 2709 . . 3 (𝑡 ∈ {𝑥𝜓} ↔ [𝑡 / 𝑥]𝜓)
41, 2, 33imtr4g 296 . 2 (∀𝑥(𝜑𝜓) → (𝑡 ∈ {𝑥𝜑} → 𝑡 ∈ {𝑥𝜓}))
54ssrdv 3938 1 (∀𝑥(𝜑𝜓) → {𝑥𝜑} ⊆ {𝑥𝜓})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1539  [wsb 2066  wcel 2110  {cab 2708  wss 3900
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911
This theorem depends on definitions:  df-bi 207  df-sb 2067  df-clab 2709  df-ss 3917
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator