MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2ax6elem Structured version   Visualization version   GIF version

Theorem 2ax6elem 2470
Description: We can always find values matching 𝑥 and 𝑦, as long as they are represented by distinct variables. This theorem merges two ax6e 2383 instances 𝑧𝑧 = 𝑥 and 𝑤𝑤 = 𝑦 into a common expression. Alan Sare contributed a variant of this theorem with distinct variable conditions before, see ax6e2nd 42178. Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by Wolf Lammen, 27-Sep-2018.) (New usage is discouraged.)
Assertion
Ref Expression
2ax6elem (¬ ∀𝑤 𝑤 = 𝑧 → ∃𝑧𝑤(𝑧 = 𝑥𝑤 = 𝑦))

Proof of Theorem 2ax6elem
StepHypRef Expression
1 ax6e 2383 . . . 4 𝑧 𝑧 = 𝑥
2 nfnae 2434 . . . . . 6 𝑧 ¬ ∀𝑤 𝑤 = 𝑧
3 nfnae 2434 . . . . . 6 𝑧 ¬ ∀𝑤 𝑤 = 𝑥
42, 3nfan 1902 . . . . 5 𝑧(¬ ∀𝑤 𝑤 = 𝑧 ∧ ¬ ∀𝑤 𝑤 = 𝑥)
5 nfeqf 2381 . . . . . 6 ((¬ ∀𝑤 𝑤 = 𝑧 ∧ ¬ ∀𝑤 𝑤 = 𝑥) → Ⅎ𝑤 𝑧 = 𝑥)
6 pm3.21 472 . . . . . 6 (𝑤 = 𝑦 → (𝑧 = 𝑥 → (𝑧 = 𝑥𝑤 = 𝑦)))
75, 6spimed 2388 . . . . 5 ((¬ ∀𝑤 𝑤 = 𝑧 ∧ ¬ ∀𝑤 𝑤 = 𝑥) → (𝑧 = 𝑥 → ∃𝑤(𝑧 = 𝑥𝑤 = 𝑦)))
84, 7eximd 2209 . . . 4 ((¬ ∀𝑤 𝑤 = 𝑧 ∧ ¬ ∀𝑤 𝑤 = 𝑥) → (∃𝑧 𝑧 = 𝑥 → ∃𝑧𝑤(𝑧 = 𝑥𝑤 = 𝑦)))
91, 8mpi 20 . . 3 ((¬ ∀𝑤 𝑤 = 𝑧 ∧ ¬ ∀𝑤 𝑤 = 𝑥) → ∃𝑧𝑤(𝑧 = 𝑥𝑤 = 𝑦))
109ex 413 . 2 (¬ ∀𝑤 𝑤 = 𝑧 → (¬ ∀𝑤 𝑤 = 𝑥 → ∃𝑧𝑤(𝑧 = 𝑥𝑤 = 𝑦)))
11 ax6e 2383 . . 3 𝑧 𝑧 = 𝑦
12 nfae 2433 . . . 4 𝑧𝑤 𝑤 = 𝑥
13 equvini 2455 . . . . 5 (𝑧 = 𝑦 → ∃𝑤(𝑧 = 𝑤𝑤 = 𝑦))
14 equtrr 2025 . . . . . . 7 (𝑤 = 𝑥 → (𝑧 = 𝑤𝑧 = 𝑥))
1514anim1d 611 . . . . . 6 (𝑤 = 𝑥 → ((𝑧 = 𝑤𝑤 = 𝑦) → (𝑧 = 𝑥𝑤 = 𝑦)))
1615aleximi 1834 . . . . 5 (∀𝑤 𝑤 = 𝑥 → (∃𝑤(𝑧 = 𝑤𝑤 = 𝑦) → ∃𝑤(𝑧 = 𝑥𝑤 = 𝑦)))
1713, 16syl5 34 . . . 4 (∀𝑤 𝑤 = 𝑥 → (𝑧 = 𝑦 → ∃𝑤(𝑧 = 𝑥𝑤 = 𝑦)))
1812, 17eximd 2209 . . 3 (∀𝑤 𝑤 = 𝑥 → (∃𝑧 𝑧 = 𝑦 → ∃𝑧𝑤(𝑧 = 𝑥𝑤 = 𝑦)))
1911, 18mpi 20 . 2 (∀𝑤 𝑤 = 𝑥 → ∃𝑧𝑤(𝑧 = 𝑥𝑤 = 𝑦))
2010, 19pm2.61d2 181 1 (¬ ∀𝑤 𝑤 = 𝑧 → ∃𝑧𝑤(𝑧 = 𝑥𝑤 = 𝑦))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wal 1537  wex 1782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-10 2137  ax-11 2154  ax-12 2171  ax-13 2372
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-nf 1787
This theorem is referenced by:  2ax6e  2471
  Copyright terms: Public domain W3C validator