Proof of Theorem 2ax6elem
| Step | Hyp | Ref
| Expression |
| 1 | | ax6e 2388 |
. . . 4
⊢
∃𝑧 𝑧 = 𝑥 |
| 2 | | nfnae 2439 |
. . . . . 6
⊢
Ⅎ𝑧 ¬
∀𝑤 𝑤 = 𝑧 |
| 3 | | nfnae 2439 |
. . . . . 6
⊢
Ⅎ𝑧 ¬
∀𝑤 𝑤 = 𝑥 |
| 4 | 2, 3 | nfan 1899 |
. . . . 5
⊢
Ⅎ𝑧(¬
∀𝑤 𝑤 = 𝑧 ∧ ¬ ∀𝑤 𝑤 = 𝑥) |
| 5 | | nfeqf 2386 |
. . . . . 6
⊢ ((¬
∀𝑤 𝑤 = 𝑧 ∧ ¬ ∀𝑤 𝑤 = 𝑥) → Ⅎ𝑤 𝑧 = 𝑥) |
| 6 | | pm3.21 471 |
. . . . . 6
⊢ (𝑤 = 𝑦 → (𝑧 = 𝑥 → (𝑧 = 𝑥 ∧ 𝑤 = 𝑦))) |
| 7 | 5, 6 | spimed 2393 |
. . . . 5
⊢ ((¬
∀𝑤 𝑤 = 𝑧 ∧ ¬ ∀𝑤 𝑤 = 𝑥) → (𝑧 = 𝑥 → ∃𝑤(𝑧 = 𝑥 ∧ 𝑤 = 𝑦))) |
| 8 | 4, 7 | eximd 2217 |
. . . 4
⊢ ((¬
∀𝑤 𝑤 = 𝑧 ∧ ¬ ∀𝑤 𝑤 = 𝑥) → (∃𝑧 𝑧 = 𝑥 → ∃𝑧∃𝑤(𝑧 = 𝑥 ∧ 𝑤 = 𝑦))) |
| 9 | 1, 8 | mpi 20 |
. . 3
⊢ ((¬
∀𝑤 𝑤 = 𝑧 ∧ ¬ ∀𝑤 𝑤 = 𝑥) → ∃𝑧∃𝑤(𝑧 = 𝑥 ∧ 𝑤 = 𝑦)) |
| 10 | 9 | ex 412 |
. 2
⊢ (¬
∀𝑤 𝑤 = 𝑧 → (¬ ∀𝑤 𝑤 = 𝑥 → ∃𝑧∃𝑤(𝑧 = 𝑥 ∧ 𝑤 = 𝑦))) |
| 11 | | ax6e 2388 |
. . 3
⊢
∃𝑧 𝑧 = 𝑦 |
| 12 | | nfae 2438 |
. . . 4
⊢
Ⅎ𝑧∀𝑤 𝑤 = 𝑥 |
| 13 | | equvini 2460 |
. . . . 5
⊢ (𝑧 = 𝑦 → ∃𝑤(𝑧 = 𝑤 ∧ 𝑤 = 𝑦)) |
| 14 | | equtrr 2022 |
. . . . . . 7
⊢ (𝑤 = 𝑥 → (𝑧 = 𝑤 → 𝑧 = 𝑥)) |
| 15 | 14 | anim1d 611 |
. . . . . 6
⊢ (𝑤 = 𝑥 → ((𝑧 = 𝑤 ∧ 𝑤 = 𝑦) → (𝑧 = 𝑥 ∧ 𝑤 = 𝑦))) |
| 16 | 15 | aleximi 1832 |
. . . . 5
⊢
(∀𝑤 𝑤 = 𝑥 → (∃𝑤(𝑧 = 𝑤 ∧ 𝑤 = 𝑦) → ∃𝑤(𝑧 = 𝑥 ∧ 𝑤 = 𝑦))) |
| 17 | 13, 16 | syl5 34 |
. . . 4
⊢
(∀𝑤 𝑤 = 𝑥 → (𝑧 = 𝑦 → ∃𝑤(𝑧 = 𝑥 ∧ 𝑤 = 𝑦))) |
| 18 | 12, 17 | eximd 2217 |
. . 3
⊢
(∀𝑤 𝑤 = 𝑥 → (∃𝑧 𝑧 = 𝑦 → ∃𝑧∃𝑤(𝑧 = 𝑥 ∧ 𝑤 = 𝑦))) |
| 19 | 11, 18 | mpi 20 |
. 2
⊢
(∀𝑤 𝑤 = 𝑥 → ∃𝑧∃𝑤(𝑧 = 𝑥 ∧ 𝑤 = 𝑦)) |
| 20 | 10, 19 | pm2.61d2 181 |
1
⊢ (¬
∀𝑤 𝑤 = 𝑧 → ∃𝑧∃𝑤(𝑧 = 𝑥 ∧ 𝑤 = 𝑦)) |