Proof of Theorem 2ax6elem
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | ax6e 2387 | . . . 4
⊢
∃𝑧 𝑧 = 𝑥 | 
| 2 |  | nfnae 2438 | . . . . . 6
⊢
Ⅎ𝑧 ¬
∀𝑤 𝑤 = 𝑧 | 
| 3 |  | nfnae 2438 | . . . . . 6
⊢
Ⅎ𝑧 ¬
∀𝑤 𝑤 = 𝑥 | 
| 4 | 2, 3 | nfan 1898 | . . . . 5
⊢
Ⅎ𝑧(¬
∀𝑤 𝑤 = 𝑧 ∧ ¬ ∀𝑤 𝑤 = 𝑥) | 
| 5 |  | nfeqf 2385 | . . . . . 6
⊢ ((¬
∀𝑤 𝑤 = 𝑧 ∧ ¬ ∀𝑤 𝑤 = 𝑥) → Ⅎ𝑤 𝑧 = 𝑥) | 
| 6 |  | pm3.21 471 | . . . . . 6
⊢ (𝑤 = 𝑦 → (𝑧 = 𝑥 → (𝑧 = 𝑥 ∧ 𝑤 = 𝑦))) | 
| 7 | 5, 6 | spimed 2392 | . . . . 5
⊢ ((¬
∀𝑤 𝑤 = 𝑧 ∧ ¬ ∀𝑤 𝑤 = 𝑥) → (𝑧 = 𝑥 → ∃𝑤(𝑧 = 𝑥 ∧ 𝑤 = 𝑦))) | 
| 8 | 4, 7 | eximd 2215 | . . . 4
⊢ ((¬
∀𝑤 𝑤 = 𝑧 ∧ ¬ ∀𝑤 𝑤 = 𝑥) → (∃𝑧 𝑧 = 𝑥 → ∃𝑧∃𝑤(𝑧 = 𝑥 ∧ 𝑤 = 𝑦))) | 
| 9 | 1, 8 | mpi 20 | . . 3
⊢ ((¬
∀𝑤 𝑤 = 𝑧 ∧ ¬ ∀𝑤 𝑤 = 𝑥) → ∃𝑧∃𝑤(𝑧 = 𝑥 ∧ 𝑤 = 𝑦)) | 
| 10 | 9 | ex 412 | . 2
⊢ (¬
∀𝑤 𝑤 = 𝑧 → (¬ ∀𝑤 𝑤 = 𝑥 → ∃𝑧∃𝑤(𝑧 = 𝑥 ∧ 𝑤 = 𝑦))) | 
| 11 |  | ax6e 2387 | . . 3
⊢
∃𝑧 𝑧 = 𝑦 | 
| 12 |  | nfae 2437 | . . . 4
⊢
Ⅎ𝑧∀𝑤 𝑤 = 𝑥 | 
| 13 |  | equvini 2459 | . . . . 5
⊢ (𝑧 = 𝑦 → ∃𝑤(𝑧 = 𝑤 ∧ 𝑤 = 𝑦)) | 
| 14 |  | equtrr 2020 | . . . . . . 7
⊢ (𝑤 = 𝑥 → (𝑧 = 𝑤 → 𝑧 = 𝑥)) | 
| 15 | 14 | anim1d 611 | . . . . . 6
⊢ (𝑤 = 𝑥 → ((𝑧 = 𝑤 ∧ 𝑤 = 𝑦) → (𝑧 = 𝑥 ∧ 𝑤 = 𝑦))) | 
| 16 | 15 | aleximi 1831 | . . . . 5
⊢
(∀𝑤 𝑤 = 𝑥 → (∃𝑤(𝑧 = 𝑤 ∧ 𝑤 = 𝑦) → ∃𝑤(𝑧 = 𝑥 ∧ 𝑤 = 𝑦))) | 
| 17 | 13, 16 | syl5 34 | . . . 4
⊢
(∀𝑤 𝑤 = 𝑥 → (𝑧 = 𝑦 → ∃𝑤(𝑧 = 𝑥 ∧ 𝑤 = 𝑦))) | 
| 18 | 12, 17 | eximd 2215 | . . 3
⊢
(∀𝑤 𝑤 = 𝑥 → (∃𝑧 𝑧 = 𝑦 → ∃𝑧∃𝑤(𝑧 = 𝑥 ∧ 𝑤 = 𝑦))) | 
| 19 | 11, 18 | mpi 20 | . 2
⊢
(∀𝑤 𝑤 = 𝑥 → ∃𝑧∃𝑤(𝑧 = 𝑥 ∧ 𝑤 = 𝑦)) | 
| 20 | 10, 19 | pm2.61d2 181 | 1
⊢ (¬
∀𝑤 𝑤 = 𝑧 → ∃𝑧∃𝑤(𝑧 = 𝑥 ∧ 𝑤 = 𝑦)) |