Proof of Theorem 2ax6elem
Step | Hyp | Ref
| Expression |
1 | | ax6e 2383 |
. . . 4
⊢
∃𝑧 𝑧 = 𝑥 |
2 | | nfnae 2434 |
. . . . . 6
⊢
Ⅎ𝑧 ¬
∀𝑤 𝑤 = 𝑧 |
3 | | nfnae 2434 |
. . . . . 6
⊢
Ⅎ𝑧 ¬
∀𝑤 𝑤 = 𝑥 |
4 | 2, 3 | nfan 1902 |
. . . . 5
⊢
Ⅎ𝑧(¬
∀𝑤 𝑤 = 𝑧 ∧ ¬ ∀𝑤 𝑤 = 𝑥) |
5 | | nfeqf 2381 |
. . . . . 6
⊢ ((¬
∀𝑤 𝑤 = 𝑧 ∧ ¬ ∀𝑤 𝑤 = 𝑥) → Ⅎ𝑤 𝑧 = 𝑥) |
6 | | pm3.21 472 |
. . . . . 6
⊢ (𝑤 = 𝑦 → (𝑧 = 𝑥 → (𝑧 = 𝑥 ∧ 𝑤 = 𝑦))) |
7 | 5, 6 | spimed 2388 |
. . . . 5
⊢ ((¬
∀𝑤 𝑤 = 𝑧 ∧ ¬ ∀𝑤 𝑤 = 𝑥) → (𝑧 = 𝑥 → ∃𝑤(𝑧 = 𝑥 ∧ 𝑤 = 𝑦))) |
8 | 4, 7 | eximd 2209 |
. . . 4
⊢ ((¬
∀𝑤 𝑤 = 𝑧 ∧ ¬ ∀𝑤 𝑤 = 𝑥) → (∃𝑧 𝑧 = 𝑥 → ∃𝑧∃𝑤(𝑧 = 𝑥 ∧ 𝑤 = 𝑦))) |
9 | 1, 8 | mpi 20 |
. . 3
⊢ ((¬
∀𝑤 𝑤 = 𝑧 ∧ ¬ ∀𝑤 𝑤 = 𝑥) → ∃𝑧∃𝑤(𝑧 = 𝑥 ∧ 𝑤 = 𝑦)) |
10 | 9 | ex 413 |
. 2
⊢ (¬
∀𝑤 𝑤 = 𝑧 → (¬ ∀𝑤 𝑤 = 𝑥 → ∃𝑧∃𝑤(𝑧 = 𝑥 ∧ 𝑤 = 𝑦))) |
11 | | ax6e 2383 |
. . 3
⊢
∃𝑧 𝑧 = 𝑦 |
12 | | nfae 2433 |
. . . 4
⊢
Ⅎ𝑧∀𝑤 𝑤 = 𝑥 |
13 | | equvini 2455 |
. . . . 5
⊢ (𝑧 = 𝑦 → ∃𝑤(𝑧 = 𝑤 ∧ 𝑤 = 𝑦)) |
14 | | equtrr 2025 |
. . . . . . 7
⊢ (𝑤 = 𝑥 → (𝑧 = 𝑤 → 𝑧 = 𝑥)) |
15 | 14 | anim1d 611 |
. . . . . 6
⊢ (𝑤 = 𝑥 → ((𝑧 = 𝑤 ∧ 𝑤 = 𝑦) → (𝑧 = 𝑥 ∧ 𝑤 = 𝑦))) |
16 | 15 | aleximi 1834 |
. . . . 5
⊢
(∀𝑤 𝑤 = 𝑥 → (∃𝑤(𝑧 = 𝑤 ∧ 𝑤 = 𝑦) → ∃𝑤(𝑧 = 𝑥 ∧ 𝑤 = 𝑦))) |
17 | 13, 16 | syl5 34 |
. . . 4
⊢
(∀𝑤 𝑤 = 𝑥 → (𝑧 = 𝑦 → ∃𝑤(𝑧 = 𝑥 ∧ 𝑤 = 𝑦))) |
18 | 12, 17 | eximd 2209 |
. . 3
⊢
(∀𝑤 𝑤 = 𝑥 → (∃𝑧 𝑧 = 𝑦 → ∃𝑧∃𝑤(𝑧 = 𝑥 ∧ 𝑤 = 𝑦))) |
19 | 11, 18 | mpi 20 |
. 2
⊢
(∀𝑤 𝑤 = 𝑥 → ∃𝑧∃𝑤(𝑧 = 𝑥 ∧ 𝑤 = 𝑦)) |
20 | 10, 19 | pm2.61d2 181 |
1
⊢ (¬
∀𝑤 𝑤 = 𝑧 → ∃𝑧∃𝑤(𝑧 = 𝑥 ∧ 𝑤 = 𝑦)) |