Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  srossspw Structured version   Visualization version   GIF version

Theorem srossspw 31856
Description: A semiring of sets is a collection of subsets of 𝑂. (Contributed by Thierry Arnoux, 18-Jul-2020.)
Hypothesis
Ref Expression
issros.1 𝑁 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 ((𝑥𝑦) ∈ 𝑠 ∧ ∃𝑧 ∈ 𝒫 𝑠(𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ (𝑥𝑦) = 𝑧)))}
Assertion
Ref Expression
srossspw (𝑆𝑁𝑆 ⊆ 𝒫 𝑂)
Distinct variable groups:   𝑡,𝑠,𝑥,𝑦   𝑂,𝑠   𝑆,𝑠,𝑥,𝑦,𝑧
Allowed substitution hints:   𝑆(𝑡)   𝑁(𝑥,𝑦,𝑧,𝑡,𝑠)   𝑂(𝑥,𝑦,𝑧,𝑡)

Proof of Theorem srossspw
StepHypRef Expression
1 issros.1 . . . 4 𝑁 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 ((𝑥𝑦) ∈ 𝑠 ∧ ∃𝑧 ∈ 𝒫 𝑠(𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ (𝑥𝑦) = 𝑧)))}
21issros 31855 . . 3 (𝑆𝑁 ↔ (𝑆 ∈ 𝒫 𝒫 𝑂 ∧ ∅ ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 ((𝑥𝑦) ∈ 𝑆 ∧ ∃𝑧 ∈ 𝒫 𝑆(𝑧 ∈ Fin ∧ Disj 𝑡𝑧 𝑡 ∧ (𝑥𝑦) = 𝑧))))
32simp1bi 1147 . 2 (𝑆𝑁𝑆 ∈ 𝒫 𝒫 𝑂)
43elpwid 4524 1 (𝑆𝑁𝑆 ⊆ 𝒫 𝑂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2110  wral 3061  wrex 3062  {crab 3065  cdif 3863  cin 3865  wss 3866  c0 4237  𝒫 cpw 4513   cuni 4819  Disj wdisj 5018  Fincfn 8626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-ext 2708
This theorem depends on definitions:  df-bi 210  df-an 400  df-3an 1091  df-tru 1546  df-ex 1788  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-in 3873  df-ss 3883  df-pw 4515
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator