![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > srossspw | Structured version Visualization version GIF version |
Description: A semiring of sets is a collection of subsets of 𝑂. (Contributed by Thierry Arnoux, 18-Jul-2020.) |
Ref | Expression |
---|---|
issros.1 | ⊢ 𝑁 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 ((𝑥 ∩ 𝑦) ∈ 𝑠 ∧ ∃𝑧 ∈ 𝒫 𝑠(𝑧 ∈ Fin ∧ Disj 𝑡 ∈ 𝑧 𝑡 ∧ (𝑥 ∖ 𝑦) = ∪ 𝑧)))} |
Ref | Expression |
---|---|
srossspw | ⊢ (𝑆 ∈ 𝑁 → 𝑆 ⊆ 𝒫 𝑂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issros.1 | . . . 4 ⊢ 𝑁 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 ((𝑥 ∩ 𝑦) ∈ 𝑠 ∧ ∃𝑧 ∈ 𝒫 𝑠(𝑧 ∈ Fin ∧ Disj 𝑡 ∈ 𝑧 𝑡 ∧ (𝑥 ∖ 𝑦) = ∪ 𝑧)))} | |
2 | 1 | issros 32838 | . . 3 ⊢ (𝑆 ∈ 𝑁 ↔ (𝑆 ∈ 𝒫 𝒫 𝑂 ∧ ∅ ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ((𝑥 ∩ 𝑦) ∈ 𝑆 ∧ ∃𝑧 ∈ 𝒫 𝑆(𝑧 ∈ Fin ∧ Disj 𝑡 ∈ 𝑧 𝑡 ∧ (𝑥 ∖ 𝑦) = ∪ 𝑧)))) |
3 | 2 | simp1bi 1146 | . 2 ⊢ (𝑆 ∈ 𝑁 → 𝑆 ∈ 𝒫 𝒫 𝑂) |
4 | 3 | elpwid 4573 | 1 ⊢ (𝑆 ∈ 𝑁 → 𝑆 ⊆ 𝒫 𝑂) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ∀wral 3061 ∃wrex 3070 {crab 3406 ∖ cdif 3911 ∩ cin 3913 ⊆ wss 3914 ∅c0 4286 𝒫 cpw 4564 ∪ cuni 4869 Disj wdisj 5074 Fincfn 8889 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-3an 1090 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3449 df-in 3921 df-ss 3931 df-pw 4566 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |