Home | Metamath
Proof Explorer Theorem List (p. 41 of 466) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29289) |
Hilbert Space Explorer
(29290-30812) |
Users' Mathboxes
(30813-46532) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | ss2abi 4001 | Inference of abstraction subclass from implication. (Contributed by NM, 31-Mar-1995.) Avoid ax-8 2109, ax-10 2138, ax-11 2155, ax-12 2172. (Revised by Gino Giotto, 28-Jun-2024.) |
⊢ (𝜑 → 𝜓) ⇒ ⊢ {𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜓} | ||
Theorem | ss2abiOLD 4002 | Obsolete version of ss2abi 4001 as of 28-Jun-2024. (Contributed by NM, 31-Mar-1995.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → 𝜓) ⇒ ⊢ {𝑥 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜓} | ||
Theorem | abssdv 4003* | Deduction of abstraction subclass from implication. (Contributed by NM, 20-Jan-2006.) |
⊢ (𝜑 → (𝜓 → 𝑥 ∈ 𝐴)) ⇒ ⊢ (𝜑 → {𝑥 ∣ 𝜓} ⊆ 𝐴) | ||
Theorem | abssi 4004* | Inference of abstraction subclass from implication. (Contributed by NM, 20-Jan-2006.) |
⊢ (𝜑 → 𝑥 ∈ 𝐴) ⇒ ⊢ {𝑥 ∣ 𝜑} ⊆ 𝐴 | ||
Theorem | ss2rab 4005 | Restricted abstraction classes in a subclass relationship. (Contributed by NM, 30-May-1999.) |
⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ {𝑥 ∈ 𝐴 ∣ 𝜓} ↔ ∀𝑥 ∈ 𝐴 (𝜑 → 𝜓)) | ||
Theorem | rabss 4006* | Restricted class abstraction in a subclass relationship. (Contributed by NM, 16-Aug-2006.) |
⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 ∈ 𝐵)) | ||
Theorem | ssrab 4007* | Subclass of a restricted class abstraction. (Contributed by NM, 16-Aug-2006.) |
⊢ (𝐵 ⊆ {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ (𝐵 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐵 𝜑)) | ||
Theorem | ssrabdv 4008* | Subclass of a restricted class abstraction (deduction form). (Contributed by NM, 31-Aug-2006.) |
⊢ (𝜑 → 𝐵 ⊆ 𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝜓) ⇒ ⊢ (𝜑 → 𝐵 ⊆ {𝑥 ∈ 𝐴 ∣ 𝜓}) | ||
Theorem | rabssdv 4009* | Subclass of a restricted class abstraction (deduction form). (Contributed by NM, 2-Feb-2015.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝜓) → 𝑥 ∈ 𝐵) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} ⊆ 𝐵) | ||
Theorem | ss2rabdv 4010* | Deduction of restricted abstraction subclass from implication. (Contributed by NM, 30-May-2006.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} ⊆ {𝑥 ∈ 𝐴 ∣ 𝜒}) | ||
Theorem | ss2rabi 4011 | Inference of restricted abstraction subclass from implication. (Contributed by NM, 14-Oct-1999.) |
⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) ⇒ ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ {𝑥 ∈ 𝐴 ∣ 𝜓} | ||
Theorem | rabss2 4012* | Subclass law for restricted abstraction. (Contributed by NM, 18-Dec-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
⊢ (𝐴 ⊆ 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ {𝑥 ∈ 𝐵 ∣ 𝜑}) | ||
Theorem | ssab2 4013* | Subclass relation for the restriction of a class abstraction. (Contributed by NM, 31-Mar-1995.) |
⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ⊆ 𝐴 | ||
Theorem | ssrab2 4014* | Subclass relation for a restricted class. (Contributed by NM, 19-Mar-1997.) (Proof shortened by BJ and SN, 8-Aug-2024.) |
⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 | ||
Theorem | ssrab2OLD 4015* | Obsolete version of ssrab2 4014 as of 8-Aug-2024. (Contributed by NM, 19-Mar-1997.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 | ||
Theorem | ssrab3 4016* | Subclass relation for a restricted class abstraction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
⊢ 𝐵 = {𝑥 ∈ 𝐴 ∣ 𝜑} ⇒ ⊢ 𝐵 ⊆ 𝐴 | ||
Theorem | rabssrabd 4017* | Subclass of a restricted class abstraction. (Contributed by AV, 4-Jun-2022.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ ((𝜑 ∧ 𝜓 ∧ 𝑥 ∈ 𝐴) → 𝜒) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} ⊆ {𝑥 ∈ 𝐵 ∣ 𝜒}) | ||
Theorem | ssrabeq 4018* | If the restricting class of a restricted class abstraction is a subset of this restricted class abstraction, it is equal to this restricted class abstraction. (Contributed by Alexander van der Vekens, 31-Dec-2017.) |
⊢ (𝑉 ⊆ {𝑥 ∈ 𝑉 ∣ 𝜑} ↔ 𝑉 = {𝑥 ∈ 𝑉 ∣ 𝜑}) | ||
Theorem | rabssab 4019 | A restricted class is a subclass of the corresponding unrestricted class. (Contributed by Mario Carneiro, 23-Dec-2016.) |
⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ {𝑥 ∣ 𝜑} | ||
Theorem | uniiunlem 4020* | A subset relationship useful for converting union to indexed union using dfiun2 4964 or dfiun2g 4961 and intersection to indexed intersection using dfiin2 4965. (Contributed by NM, 5-Oct-2006.) (Proof shortened by Mario Carneiro, 26-Sep-2015.) |
⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐷 → (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ↔ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ⊆ 𝐶)) | ||
Theorem | dfpss2 4021 | Alternate definition of proper subclass. (Contributed by NM, 7-Feb-1996.) |
⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐴 = 𝐵)) | ||
Theorem | dfpss3 4022 | Alternate definition of proper subclass. (Contributed by NM, 7-Feb-1996.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐵 ⊆ 𝐴)) | ||
Theorem | psseq1 4023 | Equality theorem for proper subclass. (Contributed by NM, 7-Feb-1996.) |
⊢ (𝐴 = 𝐵 → (𝐴 ⊊ 𝐶 ↔ 𝐵 ⊊ 𝐶)) | ||
Theorem | psseq2 4024 | Equality theorem for proper subclass. (Contributed by NM, 7-Feb-1996.) |
⊢ (𝐴 = 𝐵 → (𝐶 ⊊ 𝐴 ↔ 𝐶 ⊊ 𝐵)) | ||
Theorem | psseq1i 4025 | An equality inference for the proper subclass relationship. (Contributed by NM, 9-Jun-2004.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐴 ⊊ 𝐶 ↔ 𝐵 ⊊ 𝐶) | ||
Theorem | psseq2i 4026 | An equality inference for the proper subclass relationship. (Contributed by NM, 9-Jun-2004.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐶 ⊊ 𝐴 ↔ 𝐶 ⊊ 𝐵) | ||
Theorem | psseq12i 4027 | An equality inference for the proper subclass relationship. (Contributed by NM, 9-Jun-2004.) |
⊢ 𝐴 = 𝐵 & ⊢ 𝐶 = 𝐷 ⇒ ⊢ (𝐴 ⊊ 𝐶 ↔ 𝐵 ⊊ 𝐷) | ||
Theorem | psseq1d 4028 | An equality deduction for the proper subclass relationship. (Contributed by NM, 9-Jun-2004.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐴 ⊊ 𝐶 ↔ 𝐵 ⊊ 𝐶)) | ||
Theorem | psseq2d 4029 | An equality deduction for the proper subclass relationship. (Contributed by NM, 9-Jun-2004.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐶 ⊊ 𝐴 ↔ 𝐶 ⊊ 𝐵)) | ||
Theorem | psseq12d 4030 | An equality deduction for the proper subclass relationship. (Contributed by NM, 9-Jun-2004.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → (𝐴 ⊊ 𝐶 ↔ 𝐵 ⊊ 𝐷)) | ||
Theorem | pssss 4031 | A proper subclass is a subclass. Theorem 10 of [Suppes] p. 23. (Contributed by NM, 7-Feb-1996.) |
⊢ (𝐴 ⊊ 𝐵 → 𝐴 ⊆ 𝐵) | ||
Theorem | pssne 4032 | Two classes in a proper subclass relationship are not equal. (Contributed by NM, 16-Feb-2015.) |
⊢ (𝐴 ⊊ 𝐵 → 𝐴 ≠ 𝐵) | ||
Theorem | pssssd 4033 | Deduce subclass from proper subclass. (Contributed by NM, 29-Feb-1996.) |
⊢ (𝜑 → 𝐴 ⊊ 𝐵) ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | ||
Theorem | pssned 4034 | Proper subclasses are unequal. Deduction form of pssne 4032. (Contributed by David Moews, 1-May-2017.) |
⊢ (𝜑 → 𝐴 ⊊ 𝐵) ⇒ ⊢ (𝜑 → 𝐴 ≠ 𝐵) | ||
Theorem | sspss 4035 | Subclass in terms of proper subclass. (Contributed by NM, 25-Feb-1996.) |
⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵)) | ||
Theorem | pssirr 4036 | Proper subclass is irreflexive. Theorem 7 of [Suppes] p. 23. (Contributed by NM, 7-Feb-1996.) |
⊢ ¬ 𝐴 ⊊ 𝐴 | ||
Theorem | pssn2lp 4037 | Proper subclass has no 2-cycle loops. Compare Theorem 8 of [Suppes] p. 23. (Contributed by NM, 7-Feb-1996.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
⊢ ¬ (𝐴 ⊊ 𝐵 ∧ 𝐵 ⊊ 𝐴) | ||
Theorem | sspsstri 4038 | Two ways of stating trichotomy with respect to inclusion. (Contributed by NM, 12-Aug-2004.) |
⊢ ((𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴) ↔ (𝐴 ⊊ 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 ⊊ 𝐴)) | ||
Theorem | ssnpss 4039 | Partial trichotomy law for subclasses. (Contributed by NM, 16-May-1996.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
⊢ (𝐴 ⊆ 𝐵 → ¬ 𝐵 ⊊ 𝐴) | ||
Theorem | psstr 4040 | Transitive law for proper subclass. Theorem 9 of [Suppes] p. 23. (Contributed by NM, 7-Feb-1996.) |
⊢ ((𝐴 ⊊ 𝐵 ∧ 𝐵 ⊊ 𝐶) → 𝐴 ⊊ 𝐶) | ||
Theorem | sspsstr 4041 | Transitive law for subclass and proper subclass. (Contributed by NM, 3-Apr-1996.) |
⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊊ 𝐶) → 𝐴 ⊊ 𝐶) | ||
Theorem | psssstr 4042 | Transitive law for subclass and proper subclass. (Contributed by NM, 3-Apr-1996.) |
⊢ ((𝐴 ⊊ 𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐴 ⊊ 𝐶) | ||
Theorem | psstrd 4043 | Proper subclass inclusion is transitive. Deduction form of psstr 4040. (Contributed by David Moews, 1-May-2017.) |
⊢ (𝜑 → 𝐴 ⊊ 𝐵) & ⊢ (𝜑 → 𝐵 ⊊ 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ⊊ 𝐶) | ||
Theorem | sspsstrd 4044 | Transitivity involving subclass and proper subclass inclusion. Deduction form of sspsstr 4041. (Contributed by David Moews, 1-May-2017.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → 𝐵 ⊊ 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ⊊ 𝐶) | ||
Theorem | psssstrd 4045 | Transitivity involving subclass and proper subclass inclusion. Deduction form of psssstr 4042. (Contributed by David Moews, 1-May-2017.) |
⊢ (𝜑 → 𝐴 ⊊ 𝐵) & ⊢ (𝜑 → 𝐵 ⊆ 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ⊊ 𝐶) | ||
Theorem | npss 4046 | A class is not a proper subclass of another iff it satisfies a one-directional form of eqss 3937. (Contributed by Mario Carneiro, 15-May-2015.) |
⊢ (¬ 𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 → 𝐴 = 𝐵)) | ||
Theorem | ssnelpss 4047 | A subclass missing a member is a proper subclass. (Contributed by NM, 12-Jan-2002.) |
⊢ (𝐴 ⊆ 𝐵 → ((𝐶 ∈ 𝐵 ∧ ¬ 𝐶 ∈ 𝐴) → 𝐴 ⊊ 𝐵)) | ||
Theorem | ssnelpssd 4048 | Subclass inclusion with one element of the superclass missing is proper subclass inclusion. Deduction form of ssnelpss 4047. (Contributed by David Moews, 1-May-2017.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → 𝐶 ∈ 𝐵) & ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) ⇒ ⊢ (𝜑 → 𝐴 ⊊ 𝐵) | ||
Theorem | ssexnelpss 4049* | If there is an element of a class which is not contained in a subclass, the subclass is a proper subclass. (Contributed by AV, 29-Jan-2020.) |
⊢ ((𝐴 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐵 𝑥 ∉ 𝐴) → 𝐴 ⊊ 𝐵) | ||
Theorem | dfdif3 4050* | Alternate definition of class difference. (Contributed by BJ and Jim Kingdon, 16-Jun-2022.) |
⊢ (𝐴 ∖ 𝐵) = {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐵 𝑥 ≠ 𝑦} | ||
Theorem | difeq1 4051 | Equality theorem for class difference. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
⊢ (𝐴 = 𝐵 → (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐶)) | ||
Theorem | difeq2 4052 | Equality theorem for class difference. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
⊢ (𝐴 = 𝐵 → (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵)) | ||
Theorem | difeq12 4053 | Equality theorem for class difference. (Contributed by FL, 31-Aug-2009.) |
⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐷)) | ||
Theorem | difeq1i 4054 | Inference adding difference to the right in a class equality. (Contributed by NM, 15-Nov-2002.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐶) | ||
Theorem | difeq2i 4055 | Inference adding difference to the left in a class equality. (Contributed by NM, 15-Nov-2002.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵) | ||
Theorem | difeq12i 4056 | Equality inference for class difference. (Contributed by NM, 29-Aug-2004.) |
⊢ 𝐴 = 𝐵 & ⊢ 𝐶 = 𝐷 ⇒ ⊢ (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐷) | ||
Theorem | difeq1d 4057 | Deduction adding difference to the right in a class equality. (Contributed by NM, 15-Nov-2002.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐶)) | ||
Theorem | difeq2d 4058 | Deduction adding difference to the left in a class equality. (Contributed by NM, 15-Nov-2002.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵)) | ||
Theorem | difeq12d 4059 | Equality deduction for class difference. (Contributed by FL, 29-May-2014.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐷)) | ||
Theorem | difeqri 4060* | Inference from membership to difference. (Contributed by NM, 17-May-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
⊢ ((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ 𝐶) ⇒ ⊢ (𝐴 ∖ 𝐵) = 𝐶 | ||
Theorem | nfdif 4061 | Bound-variable hypothesis builder for class difference. (Contributed by NM, 3-Dec-2003.) (Revised by Mario Carneiro, 13-Oct-2016.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ Ⅎ𝑥(𝐴 ∖ 𝐵) | ||
Theorem | eldifi 4062 | Implication of membership in a class difference. (Contributed by NM, 29-Apr-1994.) |
⊢ (𝐴 ∈ (𝐵 ∖ 𝐶) → 𝐴 ∈ 𝐵) | ||
Theorem | eldifn 4063 | Implication of membership in a class difference. (Contributed by NM, 3-May-1994.) |
⊢ (𝐴 ∈ (𝐵 ∖ 𝐶) → ¬ 𝐴 ∈ 𝐶) | ||
Theorem | elndif 4064 | A set does not belong to a class excluding it. (Contributed by NM, 27-Jun-1994.) |
⊢ (𝐴 ∈ 𝐵 → ¬ 𝐴 ∈ (𝐶 ∖ 𝐵)) | ||
Theorem | neldif 4065 | Implication of membership in a class difference. (Contributed by NM, 28-Jun-1994.) |
⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ (𝐵 ∖ 𝐶)) → 𝐴 ∈ 𝐶) | ||
Theorem | difdif 4066 | Double class difference. Exercise 11 of [TakeutiZaring] p. 22. (Contributed by NM, 17-May-1998.) |
⊢ (𝐴 ∖ (𝐵 ∖ 𝐴)) = 𝐴 | ||
Theorem | difss 4067 | Subclass relationship for class difference. Exercise 14 of [TakeutiZaring] p. 22. (Contributed by NM, 29-Apr-1994.) |
⊢ (𝐴 ∖ 𝐵) ⊆ 𝐴 | ||
Theorem | difssd 4068 | A difference of two classes is contained in the minuend. Deduction form of difss 4067. (Contributed by David Moews, 1-May-2017.) |
⊢ (𝜑 → (𝐴 ∖ 𝐵) ⊆ 𝐴) | ||
Theorem | difss2 4069 | If a class is contained in a difference, it is contained in the minuend. (Contributed by David Moews, 1-May-2017.) |
⊢ (𝐴 ⊆ (𝐵 ∖ 𝐶) → 𝐴 ⊆ 𝐵) | ||
Theorem | difss2d 4070 | If a class is contained in a difference, it is contained in the minuend. Deduction form of difss2 4069. (Contributed by David Moews, 1-May-2017.) |
⊢ (𝜑 → 𝐴 ⊆ (𝐵 ∖ 𝐶)) ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | ||
Theorem | ssdifss 4071 | Preservation of a subclass relationship by class difference. (Contributed by NM, 15-Feb-2007.) |
⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∖ 𝐶) ⊆ 𝐵) | ||
Theorem | ddif 4072 | Double complement under universal class. Exercise 4.10(s) of [Mendelson] p. 231. (Contributed by NM, 8-Jan-2002.) |
⊢ (V ∖ (V ∖ 𝐴)) = 𝐴 | ||
Theorem | ssconb 4073 | Contraposition law for subsets. (Contributed by NM, 22-Mar-1998.) |
⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → (𝐴 ⊆ (𝐶 ∖ 𝐵) ↔ 𝐵 ⊆ (𝐶 ∖ 𝐴))) | ||
Theorem | sscon 4074 | Contraposition law for subsets. Exercise 15 of [TakeutiZaring] p. 22. (Contributed by NM, 22-Mar-1998.) |
⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∖ 𝐵) ⊆ (𝐶 ∖ 𝐴)) | ||
Theorem | ssdif 4075 | Difference law for subsets. (Contributed by NM, 28-May-1998.) |
⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∖ 𝐶) ⊆ (𝐵 ∖ 𝐶)) | ||
Theorem | ssdifd 4076 | If 𝐴 is contained in 𝐵, then (𝐴 ∖ 𝐶) is contained in (𝐵 ∖ 𝐶). Deduction form of ssdif 4075. (Contributed by David Moews, 1-May-2017.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → (𝐴 ∖ 𝐶) ⊆ (𝐵 ∖ 𝐶)) | ||
Theorem | sscond 4077 | If 𝐴 is contained in 𝐵, then (𝐶 ∖ 𝐵) is contained in (𝐶 ∖ 𝐴). Deduction form of sscon 4074. (Contributed by David Moews, 1-May-2017.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → (𝐶 ∖ 𝐵) ⊆ (𝐶 ∖ 𝐴)) | ||
Theorem | ssdifssd 4078 | If 𝐴 is contained in 𝐵, then (𝐴 ∖ 𝐶) is also contained in 𝐵. Deduction form of ssdifss 4071. (Contributed by David Moews, 1-May-2017.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → (𝐴 ∖ 𝐶) ⊆ 𝐵) | ||
Theorem | ssdif2d 4079 | If 𝐴 is contained in 𝐵 and 𝐶 is contained in 𝐷, then (𝐴 ∖ 𝐷) is contained in (𝐵 ∖ 𝐶). Deduction form. (Contributed by David Moews, 1-May-2017.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → 𝐶 ⊆ 𝐷) ⇒ ⊢ (𝜑 → (𝐴 ∖ 𝐷) ⊆ (𝐵 ∖ 𝐶)) | ||
Theorem | raldifb 4080 | Restricted universal quantification on a class difference in terms of an implication. (Contributed by Alexander van der Vekens, 3-Jan-2018.) |
⊢ (∀𝑥 ∈ 𝐴 (𝑥 ∉ 𝐵 → 𝜑) ↔ ∀𝑥 ∈ (𝐴 ∖ 𝐵)𝜑) | ||
Theorem | rexdifi 4081 | Restricted existential quantification over a difference. (Contributed by AV, 25-Oct-2023.) |
⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐵 ¬ 𝜑) → ∃𝑥 ∈ (𝐴 ∖ 𝐵)𝜑) | ||
Theorem | complss 4082 | Complementation reverses inclusion. (Contributed by Andrew Salmon, 15-Jul-2011.) (Proof shortened by BJ, 19-Mar-2021.) |
⊢ (𝐴 ⊆ 𝐵 ↔ (V ∖ 𝐵) ⊆ (V ∖ 𝐴)) | ||
Theorem | compleq 4083 | Two classes are equal if and only if their complements are equal. (Contributed by BJ, 19-Mar-2021.) |
⊢ (𝐴 = 𝐵 ↔ (V ∖ 𝐴) = (V ∖ 𝐵)) | ||
Theorem | elun 4084 | Expansion of membership in class union. Theorem 12 of [Suppes] p. 25. (Contributed by NM, 7-Aug-1994.) |
⊢ (𝐴 ∈ (𝐵 ∪ 𝐶) ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 ∈ 𝐶)) | ||
Theorem | elunnel1 4085 | A member of a union that is not member of the first class, is member of the second class. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ ((𝐴 ∈ (𝐵 ∪ 𝐶) ∧ ¬ 𝐴 ∈ 𝐵) → 𝐴 ∈ 𝐶) | ||
Theorem | uneqri 4086* | Inference from membership to union. (Contributed by NM, 21-Jun-1993.) |
⊢ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ 𝐶) ⇒ ⊢ (𝐴 ∪ 𝐵) = 𝐶 | ||
Theorem | unidm 4087 | Idempotent law for union of classes. Theorem 23 of [Suppes] p. 27. (Contributed by NM, 21-Jun-1993.) |
⊢ (𝐴 ∪ 𝐴) = 𝐴 | ||
Theorem | uncom 4088 | Commutative law for union of classes. Exercise 6 of [TakeutiZaring] p. 17. (Contributed by NM, 25-Jun-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
⊢ (𝐴 ∪ 𝐵) = (𝐵 ∪ 𝐴) | ||
Theorem | equncom 4089 | If a class equals the union of two other classes, then it equals the union of those two classes commuted. equncom 4089 was automatically derived from equncomVD 42495 using the tools program translate_without_overwriting.cmd and minimizing. (Contributed by Alan Sare, 18-Feb-2012.) |
⊢ (𝐴 = (𝐵 ∪ 𝐶) ↔ 𝐴 = (𝐶 ∪ 𝐵)) | ||
Theorem | equncomi 4090 | Inference form of equncom 4089. equncomi 4090 was automatically derived from equncomiVD 42496 using the tools program translate_without_overwriting.cmd and minimizing. (Contributed by Alan Sare, 18-Feb-2012.) |
⊢ 𝐴 = (𝐵 ∪ 𝐶) ⇒ ⊢ 𝐴 = (𝐶 ∪ 𝐵) | ||
Theorem | uneq1 4091 | Equality theorem for the union of two classes. (Contributed by NM, 15-Jul-1993.) |
⊢ (𝐴 = 𝐵 → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶)) | ||
Theorem | uneq2 4092 | Equality theorem for the union of two classes. (Contributed by NM, 5-Aug-1993.) |
⊢ (𝐴 = 𝐵 → (𝐶 ∪ 𝐴) = (𝐶 ∪ 𝐵)) | ||
Theorem | uneq12 4093 | Equality theorem for the union of two classes. (Contributed by NM, 29-Mar-1998.) |
⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷)) | ||
Theorem | uneq1i 4094 | Inference adding union to the right in a class equality. (Contributed by NM, 30-Aug-1993.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶) | ||
Theorem | uneq2i 4095 | Inference adding union to the left in a class equality. (Contributed by NM, 30-Aug-1993.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐶 ∪ 𝐴) = (𝐶 ∪ 𝐵) | ||
Theorem | uneq12i 4096 | Equality inference for the union of two classes. (Contributed by NM, 12-Aug-2004.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
⊢ 𝐴 = 𝐵 & ⊢ 𝐶 = 𝐷 ⇒ ⊢ (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷) | ||
Theorem | uneq1d 4097 | Deduction adding union to the right in a class equality. (Contributed by NM, 29-Mar-1998.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶)) | ||
Theorem | uneq2d 4098 | Deduction adding union to the left in a class equality. (Contributed by NM, 29-Mar-1998.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐶 ∪ 𝐴) = (𝐶 ∪ 𝐵)) | ||
Theorem | uneq12d 4099 | Equality deduction for the union of two classes. (Contributed by NM, 29-Sep-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷)) | ||
Theorem | nfun 4100 | Bound-variable hypothesis builder for the union of classes. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 14-Oct-2016.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ Ⅎ𝑥(𝐴 ∪ 𝐵) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |