Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssrdv | Structured version Visualization version GIF version |
Description: Deduction based on subclass definition. (Contributed by NM, 15-Nov-1995.) |
Ref | Expression |
---|---|
ssrdv.1 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
Ref | Expression |
---|---|
ssrdv | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrdv.1 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
2 | 1 | alrimiv 1931 | . 2 ⊢ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
3 | dfss2 3908 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
4 | 2, 3 | sylibr 233 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Copyright terms: Public domain | W3C validator |