MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssrab2OLD Structured version   Visualization version   GIF version

Theorem ssrab2OLD 4010
Description: Obsolete version of ssrab2 4009 as of 8-Aug-2024. (Contributed by NM, 19-Mar-1997.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
ssrab2OLD {𝑥𝐴𝜑} ⊆ 𝐴
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ssrab2OLD
StepHypRef Expression
1 df-rab 3072 . 2 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
2 ssab2 4008 . 2 {𝑥 ∣ (𝑥𝐴𝜑)} ⊆ 𝐴
31, 2eqsstri 3951 1 {𝑥𝐴𝜑} ⊆ 𝐴
Colors of variables: wff setvar class
Syntax hints:  wa 395  wcel 2108  {cab 2715  {crab 3067  wss 3883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-in 3890  df-ss 3900
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator