Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssrab2OLD | Structured version Visualization version GIF version |
Description: Obsolete version of ssrab2 4012 as of 8-Aug-2024. (Contributed by NM, 19-Mar-1997.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
ssrab2OLD | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 3073 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
2 | ssab2 4011 | . 2 ⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ⊆ 𝐴 | |
3 | 1, 2 | eqsstri 3954 | 1 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 ∈ wcel 2106 {cab 2715 {crab 3068 ⊆ wss 3886 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3431 df-in 3893 df-ss 3903 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |