Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rabss3d | Structured version Visualization version GIF version |
Description: Subclass law for restricted abstraction. (Contributed by Thierry Arnoux, 25-Sep-2017.) |
Ref | Expression |
---|---|
rabss3d.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝜓)) → 𝑥 ∈ 𝐵) |
Ref | Expression |
---|---|
rabss3d | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} ⊆ {𝑥 ∈ 𝐵 ∣ 𝜓}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1920 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | nfrab1 3315 | . 2 ⊢ Ⅎ𝑥{𝑥 ∈ 𝐴 ∣ 𝜓} | |
3 | nfrab1 3315 | . 2 ⊢ Ⅎ𝑥{𝑥 ∈ 𝐵 ∣ 𝜓} | |
4 | rabss3d.1 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝜓)) → 𝑥 ∈ 𝐵) | |
5 | simprr 769 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝜓)) → 𝜓) | |
6 | 4, 5 | jca 511 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝜓)) → (𝑥 ∈ 𝐵 ∧ 𝜓)) |
7 | 6 | ex 412 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) → (𝑥 ∈ 𝐵 ∧ 𝜓))) |
8 | rabid 3308 | . . 3 ⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜓} ↔ (𝑥 ∈ 𝐴 ∧ 𝜓)) | |
9 | rabid 3308 | . . 3 ⊢ (𝑥 ∈ {𝑥 ∈ 𝐵 ∣ 𝜓} ↔ (𝑥 ∈ 𝐵 ∧ 𝜓)) | |
10 | 7, 8, 9 | 3imtr4g 295 | . 2 ⊢ (𝜑 → (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜓} → 𝑥 ∈ {𝑥 ∈ 𝐵 ∣ 𝜓})) |
11 | 1, 2, 3, 10 | ssrd 3930 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} ⊆ {𝑥 ∈ 𝐵 ∣ 𝜓}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 {crab 3069 ⊆ wss 3891 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1544 df-ex 1786 df-nf 1790 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-rab 3074 df-v 3432 df-in 3898 df-ss 3908 |
This theorem is referenced by: xpinpreima2 31836 reprss 32576 reprinfz1 32581 |
Copyright terms: Public domain | W3C validator |