![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabss3d | Structured version Visualization version GIF version |
Description: Subclass law for restricted abstraction. (Contributed by Thierry Arnoux, 25-Sep-2017.) |
Ref | Expression |
---|---|
rabss3d.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝜓)) → 𝑥 ∈ 𝐵) |
Ref | Expression |
---|---|
rabss3d | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} ⊆ {𝑥 ∈ 𝐵 ∣ 𝜓}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1918 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | nfrab1 3452 | . 2 ⊢ Ⅎ𝑥{𝑥 ∈ 𝐴 ∣ 𝜓} | |
3 | nfrab1 3452 | . 2 ⊢ Ⅎ𝑥{𝑥 ∈ 𝐵 ∣ 𝜓} | |
4 | rabss3d.1 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝜓)) → 𝑥 ∈ 𝐵) | |
5 | simprr 772 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝜓)) → 𝜓) | |
6 | 4, 5 | jca 513 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝜓)) → (𝑥 ∈ 𝐵 ∧ 𝜓)) |
7 | 6 | ex 414 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) → (𝑥 ∈ 𝐵 ∧ 𝜓))) |
8 | rabid 3453 | . . 3 ⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜓} ↔ (𝑥 ∈ 𝐴 ∧ 𝜓)) | |
9 | rabid 3453 | . . 3 ⊢ (𝑥 ∈ {𝑥 ∈ 𝐵 ∣ 𝜓} ↔ (𝑥 ∈ 𝐵 ∧ 𝜓)) | |
10 | 7, 8, 9 | 3imtr4g 296 | . 2 ⊢ (𝜑 → (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜓} → 𝑥 ∈ {𝑥 ∈ 𝐵 ∣ 𝜓})) |
11 | 1, 2, 3, 10 | ssrd 3988 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} ⊆ {𝑥 ∈ 𝐵 ∣ 𝜓}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∈ wcel 2107 {crab 3433 ⊆ wss 3949 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-rab 3434 df-v 3477 df-in 3956 df-ss 3966 |
This theorem is referenced by: xpinpreima2 32918 reprss 33660 reprinfz1 33665 upwrdfi 45649 |
Copyright terms: Public domain | W3C validator |