Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rabss3d | Structured version Visualization version GIF version |
Description: Subclass law for restricted abstraction. (Contributed by Thierry Arnoux, 25-Sep-2017.) |
Ref | Expression |
---|---|
rabss3d.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝜓)) → 𝑥 ∈ 𝐵) |
Ref | Expression |
---|---|
rabss3d | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} ⊆ {𝑥 ∈ 𝐵 ∣ 𝜓}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1922 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | nfrab1 3309 | . 2 ⊢ Ⅎ𝑥{𝑥 ∈ 𝐴 ∣ 𝜓} | |
3 | nfrab1 3309 | . 2 ⊢ Ⅎ𝑥{𝑥 ∈ 𝐵 ∣ 𝜓} | |
4 | rabss3d.1 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝜓)) → 𝑥 ∈ 𝐵) | |
5 | simprr 773 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝜓)) → 𝜓) | |
6 | 4, 5 | jca 515 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝜓)) → (𝑥 ∈ 𝐵 ∧ 𝜓)) |
7 | 6 | ex 416 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) → (𝑥 ∈ 𝐵 ∧ 𝜓))) |
8 | rabid 3303 | . . 3 ⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜓} ↔ (𝑥 ∈ 𝐴 ∧ 𝜓)) | |
9 | rabid 3303 | . . 3 ⊢ (𝑥 ∈ {𝑥 ∈ 𝐵 ∣ 𝜓} ↔ (𝑥 ∈ 𝐵 ∧ 𝜓)) | |
10 | 7, 8, 9 | 3imtr4g 299 | . 2 ⊢ (𝜑 → (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜓} → 𝑥 ∈ {𝑥 ∈ 𝐵 ∣ 𝜓})) |
11 | 1, 2, 3, 10 | ssrd 3921 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} ⊆ {𝑥 ∈ 𝐵 ∣ 𝜓}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∈ wcel 2111 {crab 3066 ⊆ wss 3881 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-tru 1546 df-ex 1788 df-nf 1792 df-sb 2072 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-rab 3071 df-v 3423 df-in 3888 df-ss 3898 |
This theorem is referenced by: xpinpreima2 31598 reprss 32336 reprinfz1 32341 |
Copyright terms: Public domain | W3C validator |