MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabss3d Structured version   Visualization version   GIF version

Theorem rabss3d 4044
Description: Subclass law for restricted abstraction. (Contributed by Thierry Arnoux, 25-Sep-2017.)
Hypothesis
Ref Expression
rabss3d.1 ((𝜑 ∧ (𝑥𝐴𝜓)) → 𝑥𝐵)
Assertion
Ref Expression
rabss3d (𝜑 → {𝑥𝐴𝜓} ⊆ {𝑥𝐵𝜓})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem rabss3d
StepHypRef Expression
1 nfv 1914 . 2 𝑥𝜑
2 nfrab1 3426 . 2 𝑥{𝑥𝐴𝜓}
3 nfrab1 3426 . 2 𝑥{𝑥𝐵𝜓}
4 rabss3d.1 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝜓)) → 𝑥𝐵)
5 simprr 772 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝜓)) → 𝜓)
64, 5jca 511 . . . 4 ((𝜑 ∧ (𝑥𝐴𝜓)) → (𝑥𝐵𝜓))
76ex 412 . . 3 (𝜑 → ((𝑥𝐴𝜓) → (𝑥𝐵𝜓)))
8 rabid 3427 . . 3 (𝑥 ∈ {𝑥𝐴𝜓} ↔ (𝑥𝐴𝜓))
9 rabid 3427 . . 3 (𝑥 ∈ {𝑥𝐵𝜓} ↔ (𝑥𝐵𝜓))
107, 8, 93imtr4g 296 . 2 (𝜑 → (𝑥 ∈ {𝑥𝐴𝜓} → 𝑥 ∈ {𝑥𝐵𝜓}))
111, 2, 3, 10ssrd 3951 1 (𝜑 → {𝑥𝐴𝜓} ⊆ {𝑥𝐵𝜓})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  {crab 3405  wss 3914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-rab 3406  df-ss 3931
This theorem is referenced by:  xpinpreima2  33897  reprss  34608  reprinfz1  34613  unitscyglem2  42184  unitscyglem4  42186  unitscyglem5  42187  upwrdfi  46885
  Copyright terms: Public domain W3C validator