MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssab2 Structured version   Visualization version   GIF version

Theorem ssab2 4045
Description: Subclass relation for the restriction of a class abstraction. (Contributed by NM, 31-Mar-1995.)
Assertion
Ref Expression
ssab2 {𝑥 ∣ (𝑥𝐴𝜑)} ⊆ 𝐴
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ssab2
StepHypRef Expression
1 simpl 482 . 2 ((𝑥𝐴𝜑) → 𝑥𝐴)
21abssi 4036 1 {𝑥 ∣ (𝑥𝐴𝜑)} ⊆ 𝐴
Colors of variables: wff setvar class
Syntax hints:  wa 395  wcel 2109  {cab 2708  wss 3917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ss 3934
This theorem is referenced by:  zfausab  5290  exss  5426  dmopabss  5885  rnopabss  5922  fabexgOLD  7918  isf32lem9  10321  psubspset  39745  psubclsetN  39937
  Copyright terms: Public domain W3C validator