Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssab2 | Structured version Visualization version GIF version |
Description: Subclass relation for the restriction of a class abstraction. (Contributed by NM, 31-Mar-1995.) |
Ref | Expression |
---|---|
ssab2 | ⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝑥 ∈ 𝐴) | |
2 | 1 | abssi 3999 | 1 ⊢ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ⊆ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∈ wcel 2108 {cab 2715 ⊆ wss 3883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 |
This theorem is referenced by: ssrab2OLD 4010 zfausab 5249 exss 5372 dmopabss 5816 fabexg 7755 isf32lem9 10048 psubspset 37685 psubclsetN 37877 |
Copyright terms: Public domain | W3C validator |