MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssrexvOLD Structured version   Visualization version   GIF version

Theorem ssrexvOLD 4037
Description: Obsolete version of ssrexv 4033 as of 19-May-2025. (Contributed by NM, 11-Jan-2007.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
ssrexvOLD (𝐴𝐵 → (∃𝑥𝐴 𝜑 → ∃𝑥𝐵 𝜑))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ssrexvOLD
StepHypRef Expression
1 ssel 3957 . . 3 (𝐴𝐵 → (𝑥𝐴𝑥𝐵))
21anim1d 611 . 2 (𝐴𝐵 → ((𝑥𝐴𝜑) → (𝑥𝐵𝜑)))
32reximdv2 3151 1 (𝐴𝐵 → (∃𝑥𝐴 𝜑 → ∃𝑥𝐵 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  wrex 3059  wss 3931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1779  df-clel 2808  df-rex 3060  df-ss 3948
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator