| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > anim1d | Structured version Visualization version GIF version | ||
| Description: Add a conjunct to right of antecedent and consequent in a deduction. (Contributed by NM, 3-Apr-1994.) |
| Ref | Expression |
|---|---|
| anim1d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| anim1d | ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → (𝜒 ∧ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anim1d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | idd 24 | . 2 ⊢ (𝜑 → (𝜃 → 𝜃)) | |
| 3 | 1, 2 | anim12d 609 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → (𝜒 ∧ 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: pm3.45 622 exdistrf 2445 2ax6elem 2468 mopick2 2630 ssrexf 4013 ssrexvOLD 4020 ssdif 4107 ssrin 4205 reupick 4292 disjss1 5080 copsexgw 5450 copsexg 5451 propeqop 5467 po3nr 5561 frss 5602 coss2 5820 ordsssuc2 6425 fununi 6591 dffv2 6956 oprabidw 7418 poseq 8137 extmptsuppeq 8167 onfununi 8310 oaass 8525 ssnnfi 9133 fiint 9277 fiintOLD 9278 fiss 9375 wemapsolem 9503 tcss 9697 ac6s 10437 reclem2pr 11001 qbtwnxr 13160 ico0 13352 icoshft 13434 2ffzeq 13610 clsslem 14950 r19.2uz 15318 isprm7 16678 prmdvdsncoprmbd 16697 infpn2 16884 prmgaplem4 17025 fthres2 17896 ablfacrplem 19997 rnglidlmmgm 21155 psdmul 22053 monmat2matmon 22711 neiss 22996 uptx 23512 txcn 23513 nrmr0reg 23636 cnpflfi 23886 cnextcn 23954 caussi 25197 ovolsslem 25385 tgtrisegint 28426 inagswap 28768 shorth 31224 ac6mapd 32549 mptssALT 32599 uzssico 32707 zarclsint 33862 ordtconnlem1 33914 omsmon 34289 omssubadd 34291 subgrtrl 35120 subgrcycl 35122 acycgrsubgr 35145 mclsax 35556 trisegint 36016 segcon2 36093 opnrebl2 36309 bj-19.42t 36761 poimirlem30 37644 itg2addnclem 37665 itg2addnclem2 37666 fdc1 37740 totbndss 37771 ablo4pnp 37874 keridl 38026 dib2dim 41237 dih2dimbALTN 41239 dvh1dim 41436 mapdpglem2 41667 pell14qrss1234 42844 pell1qrss14 42856 rmxycomplete 42906 lnr2i 43105 fzunt 43444 fzuntd 43445 fzunt1d 43446 fzuntgd 43447 rp-fakeanorass 43502 rfcnnnub 45030 or2expropbi 47035 2ffzoeq 47328 ich2exprop 47472 nnsum4primes4 47790 nnsum4primesprm 47792 nnsum4primesgbe 47794 nnsum4primesle9 47796 opnneir 48895 |
| Copyright terms: Public domain | W3C validator |