| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > anim1d | Structured version Visualization version GIF version | ||
| Description: Add a conjunct to right of antecedent and consequent in a deduction. (Contributed by NM, 3-Apr-1994.) |
| Ref | Expression |
|---|---|
| anim1d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| anim1d | ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → (𝜒 ∧ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anim1d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | idd 24 | . 2 ⊢ (𝜑 → (𝜃 → 𝜃)) | |
| 3 | 1, 2 | anim12d 609 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → (𝜒 ∧ 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: pm3.45 622 exdistrf 2445 2ax6elem 2468 mopick2 2630 ssrexf 4004 ssrexvOLD 4011 ssdif 4097 ssrin 4195 reupick 4282 disjss1 5068 copsexgw 5437 copsexg 5438 propeqop 5454 po3nr 5546 frss 5587 coss2 5803 ordsssuc2 6404 fununi 6561 dffv2 6922 oprabidw 7384 poseq 8098 extmptsuppeq 8128 onfununi 8271 oaass 8486 ssnnfi 9093 fiint 9235 fiintOLD 9236 fiss 9333 wemapsolem 9461 elirrv 9508 tcss 9659 ac6s 10397 reclem2pr 10961 qbtwnxr 13120 ico0 13312 icoshft 13394 2ffzeq 13570 clsslem 14909 r19.2uz 15277 isprm7 16637 prmdvdsncoprmbd 16656 infpn2 16843 prmgaplem4 16984 fthres2 17859 ablfacrplem 19964 rnglidlmmgm 21170 psdmul 22069 monmat2matmon 22727 neiss 23012 uptx 23528 txcn 23529 nrmr0reg 23652 cnpflfi 23902 cnextcn 23970 caussi 25213 ovolsslem 25401 tgtrisegint 28462 inagswap 28804 shorth 31257 ac6mapd 32582 mptssALT 32632 uzssico 32740 zarclsint 33838 ordtconnlem1 33890 omsmon 34265 omssubadd 34267 subgrtrl 35105 subgrcycl 35107 acycgrsubgr 35130 mclsax 35541 trisegint 36001 segcon2 36078 opnrebl2 36294 bj-19.42t 36746 poimirlem30 37629 itg2addnclem 37650 itg2addnclem2 37651 fdc1 37725 totbndss 37756 ablo4pnp 37859 keridl 38011 dib2dim 41222 dih2dimbALTN 41224 dvh1dim 41421 mapdpglem2 41652 pell14qrss1234 42829 pell1qrss14 42841 rmxycomplete 42890 lnr2i 43089 fzunt 43428 fzuntd 43429 fzunt1d 43430 fzuntgd 43431 rp-fakeanorass 43486 rfcnnnub 45014 or2expropbi 47019 2ffzoeq 47312 ich2exprop 47456 nnsum4primes4 47774 nnsum4primesprm 47776 nnsum4primesgbe 47778 nnsum4primesle9 47780 opnneir 48892 |
| Copyright terms: Public domain | W3C validator |