Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > anim1d | Structured version Visualization version GIF version |
Description: Add a conjunct to right of antecedent and consequent in a deduction. (Contributed by NM, 3-Apr-1994.) |
Ref | Expression |
---|---|
anim1d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
anim1d | ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → (𝜒 ∧ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anim1d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | idd 24 | . 2 ⊢ (𝜑 → (𝜃 → 𝜃)) | |
3 | 1, 2 | anim12d 609 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → (𝜒 ∧ 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: pm3.45 622 exdistrf 2448 2ax6elem 2471 mopick2 2640 ssrexf 3986 ssrexv 3989 ssdif 4075 ssrin 4168 reupick 4253 disjss1 5046 copsexgw 5405 copsexg 5406 propeqop 5422 po3nr 5519 frss 5557 coss2 5768 ordsssuc2 6358 fununi 6516 dffv2 6872 oprabidw 7315 extmptsuppeq 8013 onfununi 8181 oaass 8401 ssnnfi 8961 ssnnfiOLD 8962 fiint 9100 fiss 9192 wemapsolem 9318 tcss 9511 ac6s 10249 reclem2pr 10813 qbtwnxr 12943 ico0 13134 icoshft 13214 2ffzeq 13386 clsslem 14704 r19.2uz 15072 isprm7 16422 prmdvdsncoprmbd 16440 infpn2 16623 prmgaplem4 16764 fthres2 17657 ablfacrplem 19677 monmat2matmon 21982 neiss 22269 uptx 22785 txcn 22786 nrmr0reg 22909 cnpflfi 23159 cnextcn 23227 caussi 24470 ovolsslem 24657 tgtrisegint 26869 inagswap 27211 shorth 29666 mptssALT 31021 uzssico 31114 zarclsint 31831 ordtconnlem1 31883 omsmon 32274 omssubadd 32276 subgrtrl 33104 subgrcycl 33106 acycgrsubgr 33129 mclsax 33540 poseq 33811 trisegint 34339 segcon2 34416 opnrebl2 34519 bj-19.42t 34964 poimirlem30 35816 itg2addnclem 35837 itg2addnclem2 35838 fdc1 35913 totbndss 35944 ablo4pnp 36047 keridl 36199 dib2dim 39264 dih2dimbALTN 39266 dvh1dim 39463 mapdpglem2 39694 pell14qrss1234 40685 pell1qrss14 40697 rmxycomplete 40746 lnr2i 40948 fzunt 41069 fzuntd 41070 fzunt1d 41071 fzuntgd 41072 rp-fakeanorass 41127 rfcnnnub 42586 or2expropbi 44539 2ffzoeq 44831 ich2exprop 44934 nnsum4primes4 45252 nnsum4primesprm 45254 nnsum4primesgbe 45256 nnsum4primesle9 45258 opnneir 46211 |
Copyright terms: Public domain | W3C validator |