| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > anim1d | Structured version Visualization version GIF version | ||
| Description: Add a conjunct to right of antecedent and consequent in a deduction. (Contributed by NM, 3-Apr-1994.) |
| Ref | Expression |
|---|---|
| anim1d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| anim1d | ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → (𝜒 ∧ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anim1d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | idd 24 | . 2 ⊢ (𝜑 → (𝜃 → 𝜃)) | |
| 3 | 1, 2 | anim12d 609 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → (𝜒 ∧ 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: pm3.45 622 exdistrf 2451 2ax6elem 2474 mopick2 2636 ssrexf 4025 ssrexvOLD 4032 ssdif 4119 ssrin 4217 reupick 4304 disjss1 5092 copsexgw 5465 copsexg 5466 propeqop 5482 po3nr 5576 frss 5618 coss2 5836 ordsssuc2 6445 fununi 6611 dffv2 6974 oprabidw 7436 poseq 8157 extmptsuppeq 8187 onfununi 8355 oaass 8573 ssnnfi 9183 fiint 9338 fiintOLD 9339 fiss 9436 wemapsolem 9564 tcss 9758 ac6s 10498 reclem2pr 11062 qbtwnxr 13216 ico0 13408 icoshft 13490 2ffzeq 13666 clsslem 15003 r19.2uz 15370 isprm7 16727 prmdvdsncoprmbd 16746 infpn2 16933 prmgaplem4 17074 fthres2 17947 ablfacrplem 20048 rnglidlmmgm 21206 psdmul 22104 monmat2matmon 22762 neiss 23047 uptx 23563 txcn 23564 nrmr0reg 23687 cnpflfi 23937 cnextcn 24005 caussi 25249 ovolsslem 25437 tgtrisegint 28478 inagswap 28820 shorth 31276 ac6mapd 32603 mptssALT 32653 uzssico 32761 zarclsint 33903 ordtconnlem1 33955 omsmon 34330 omssubadd 34332 subgrtrl 35155 subgrcycl 35157 acycgrsubgr 35180 mclsax 35591 trisegint 36046 segcon2 36123 opnrebl2 36339 bj-19.42t 36791 poimirlem30 37674 itg2addnclem 37695 itg2addnclem2 37696 fdc1 37770 totbndss 37801 ablo4pnp 37904 keridl 38056 dib2dim 41262 dih2dimbALTN 41264 dvh1dim 41461 mapdpglem2 41692 pell14qrss1234 42879 pell1qrss14 42891 rmxycomplete 42941 lnr2i 43140 fzunt 43479 fzuntd 43480 fzunt1d 43481 fzuntgd 43482 rp-fakeanorass 43537 rfcnnnub 45060 or2expropbi 47063 2ffzoeq 47356 ich2exprop 47485 nnsum4primes4 47803 nnsum4primesprm 47805 nnsum4primesgbe 47807 nnsum4primesle9 47809 opnneir 48881 |
| Copyright terms: Public domain | W3C validator |