| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > anim1d | Structured version Visualization version GIF version | ||
| Description: Add a conjunct to right of antecedent and consequent in a deduction. (Contributed by NM, 3-Apr-1994.) |
| Ref | Expression |
|---|---|
| anim1d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| anim1d | ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → (𝜒 ∧ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anim1d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | idd 24 | . 2 ⊢ (𝜑 → (𝜃 → 𝜃)) | |
| 3 | 1, 2 | anim12d 609 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → (𝜒 ∧ 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: pm3.45 622 exdistrf 2447 2ax6elem 2470 mopick2 2632 ssrexf 4001 ssrexvOLD 4008 ssdif 4094 ssrin 4192 reupick 4279 disjss1 5064 copsexgw 5430 copsexg 5431 propeqop 5447 po3nr 5539 frss 5580 coss2 5796 ordsssuc2 6399 fununi 6556 dffv2 6917 oprabidw 7377 poseq 8088 extmptsuppeq 8118 onfununi 8261 oaass 8476 ssnnfi 9079 fiint 9211 fiss 9308 wemapsolem 9436 elirrv 9483 tcss 9634 ac6s 10372 reclem2pr 10936 qbtwnxr 13096 ico0 13288 icoshft 13370 2ffzeq 13546 clsslem 14888 r19.2uz 15256 isprm7 16616 prmdvdsncoprmbd 16635 infpn2 16822 prmgaplem4 16963 fthres2 17838 chndss 18519 ablfacrplem 19977 rnglidlmmgm 21180 psdmul 22079 monmat2matmon 22737 neiss 23022 uptx 23538 txcn 23539 nrmr0reg 23662 cnpflfi 23912 cnextcn 23980 caussi 25222 ovolsslem 25410 tgtrisegint 28475 inagswap 28817 shorth 31270 ac6mapd 32601 mptssALT 32652 uzssico 32762 zarclsint 33880 ordtconnlem1 33932 omsmon 34306 omssubadd 34308 r1filimi 35106 subgrtrl 35165 subgrcycl 35167 acycgrsubgr 35190 mclsax 35601 trisegint 36061 segcon2 36138 opnrebl2 36354 bj-19.42t 36806 poimirlem30 37689 itg2addnclem 37710 itg2addnclem2 37711 fdc1 37785 totbndss 37816 ablo4pnp 37919 keridl 38071 dib2dim 41281 dih2dimbALTN 41283 dvh1dim 41480 mapdpglem2 41711 pell14qrss1234 42888 pell1qrss14 42900 rmxycomplete 42949 lnr2i 43148 fzunt 43487 fzuntd 43488 fzunt1d 43489 fzuntgd 43490 rp-fakeanorass 43545 rfcnnnub 45072 or2expropbi 47064 2ffzoeq 47357 ich2exprop 47501 nnsum4primes4 47819 nnsum4primesprm 47821 nnsum4primesgbe 47823 nnsum4primesle9 47825 opnneir 48937 |
| Copyright terms: Public domain | W3C validator |