![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > anim1d | Structured version Visualization version GIF version |
Description: Add a conjunct to right of antecedent and consequent in a deduction. (Contributed by NM, 3-Apr-1994.) |
Ref | Expression |
---|---|
anim1d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
anim1d | ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → (𝜒 ∧ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anim1d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | idd 24 | . 2 ⊢ (𝜑 → (𝜃 → 𝜃)) | |
3 | 1, 2 | anim12d 608 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → (𝜒 ∧ 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: pm3.45 621 exdistrf 2445 2ax6elem 2468 mopick2 2632 ssrexf 4048 ssrexv 4051 ssdif 4139 ssrin 4233 reupick 4318 disjss1 5119 copsexgw 5490 copsexg 5491 propeqop 5507 po3nr 5603 frss 5643 coss2 5856 ordsssuc2 6455 fununi 6623 dffv2 6986 oprabidw 7443 poseq 8149 extmptsuppeq 8178 onfununi 8347 oaass 8567 ssnnfi 9175 ssnnfiOLD 9176 fiint 9330 fiss 9425 wemapsolem 9551 tcss 9745 ac6s 10485 reclem2pr 11049 qbtwnxr 13186 ico0 13377 icoshft 13457 2ffzeq 13629 clsslem 14938 r19.2uz 15305 isprm7 16652 prmdvdsncoprmbd 16670 infpn2 16853 prmgaplem4 16994 fthres2 17892 ablfacrplem 19983 rnglidlmmgm 21123 monmat2matmon 22646 neiss 22933 uptx 23449 txcn 23450 nrmr0reg 23573 cnpflfi 23823 cnextcn 23891 caussi 25145 ovolsslem 25333 tgtrisegint 28183 inagswap 28525 shorth 30981 mptssALT 32333 uzssico 32428 zarclsint 33316 ordtconnlem1 33368 omsmon 33761 omssubadd 33763 subgrtrl 34588 subgrcycl 34590 acycgrsubgr 34613 mclsax 35024 trisegint 35470 segcon2 35547 opnrebl2 35670 bj-19.42t 36115 poimirlem30 36982 itg2addnclem 37003 itg2addnclem2 37004 fdc1 37078 totbndss 37109 ablo4pnp 37212 keridl 37364 dib2dim 40578 dih2dimbALTN 40580 dvh1dim 40777 mapdpglem2 41008 pell14qrss1234 42057 pell1qrss14 42069 rmxycomplete 42119 lnr2i 42321 fzunt 42669 fzuntd 42670 fzunt1d 42671 fzuntgd 42672 rp-fakeanorass 42727 rfcnnnub 44183 or2expropbi 46203 2ffzoeq 46495 ich2exprop 46598 nnsum4primes4 46916 nnsum4primesprm 46918 nnsum4primesgbe 46920 nnsum4primesle9 46922 opnneir 47701 |
Copyright terms: Public domain | W3C validator |