Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > anim1d | Structured version Visualization version GIF version |
Description: Add a conjunct to right of antecedent and consequent in a deduction. (Contributed by NM, 3-Apr-1994.) |
Ref | Expression |
---|---|
anim1d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
anim1d | ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → (𝜒 ∧ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anim1d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | idd 24 | . 2 ⊢ (𝜑 → (𝜃 → 𝜃)) | |
3 | 1, 2 | anim12d 608 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → (𝜒 ∧ 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: pm3.45 621 exdistrf 2447 2ax6elem 2470 mopick2 2639 ssrexf 3981 ssrexv 3984 ssdif 4070 ssrin 4164 reupick 4249 disjss1 5041 copsexgw 5398 copsexg 5399 propeqop 5415 po3nr 5509 frss 5547 coss2 5754 ordsssuc2 6339 fununi 6493 dffv2 6845 oprabidw 7286 extmptsuppeq 7975 onfununi 8143 oaass 8354 ssnnfi 8914 ssnnfiOLD 8915 fiint 9021 fiss 9113 wemapsolem 9239 tcss 9433 ac6s 10171 reclem2pr 10735 qbtwnxr 12863 ico0 13054 icoshft 13134 2ffzeq 13306 clsslem 14623 r19.2uz 14991 isprm7 16341 prmdvdsncoprmbd 16359 infpn2 16542 prmgaplem4 16683 fthres2 17564 ablfacrplem 19583 monmat2matmon 21881 neiss 22168 uptx 22684 txcn 22685 nrmr0reg 22808 cnpflfi 23058 cnextcn 23126 caussi 24366 ovolsslem 24553 tgtrisegint 26764 inagswap 27106 shorth 29558 mptssALT 30914 uzssico 31007 zarclsint 31724 ordtconnlem1 31776 omsmon 32165 omssubadd 32167 subgrtrl 32995 subgrcycl 32997 acycgrsubgr 33020 mclsax 33431 poseq 33729 trisegint 34257 segcon2 34334 opnrebl2 34437 bj-19.42t 34882 poimirlem30 35734 itg2addnclem 35755 itg2addnclem2 35756 fdc1 35831 totbndss 35862 ablo4pnp 35965 keridl 36117 dib2dim 39184 dih2dimbALTN 39186 dvh1dim 39383 mapdpglem2 39614 pell14qrss1234 40594 pell1qrss14 40606 rmxycomplete 40655 lnr2i 40857 rp-fakeanorass 41018 rfcnnnub 42468 or2expropbi 44415 2ffzoeq 44708 ich2exprop 44811 nnsum4primes4 45129 nnsum4primesprm 45131 nnsum4primesgbe 45133 nnsum4primesle9 45135 opnneir 46088 |
Copyright terms: Public domain | W3C validator |