| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > anim1d | Structured version Visualization version GIF version | ||
| Description: Add a conjunct to right of antecedent and consequent in a deduction. (Contributed by NM, 3-Apr-1994.) |
| Ref | Expression |
|---|---|
| anim1d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| anim1d | ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → (𝜒 ∧ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anim1d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | idd 24 | . 2 ⊢ (𝜑 → (𝜃 → 𝜃)) | |
| 3 | 1, 2 | anim12d 609 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → (𝜒 ∧ 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: pm3.45 622 exdistrf 2446 2ax6elem 2469 mopick2 2631 ssrexf 4016 ssrexvOLD 4023 ssdif 4110 ssrin 4208 reupick 4295 disjss1 5083 copsexgw 5453 copsexg 5454 propeqop 5470 po3nr 5564 frss 5605 coss2 5823 ordsssuc2 6428 fununi 6594 dffv2 6959 oprabidw 7421 poseq 8140 extmptsuppeq 8170 onfununi 8313 oaass 8528 ssnnfi 9139 fiint 9284 fiintOLD 9285 fiss 9382 wemapsolem 9510 tcss 9704 ac6s 10444 reclem2pr 11008 qbtwnxr 13167 ico0 13359 icoshft 13441 2ffzeq 13617 clsslem 14957 r19.2uz 15325 isprm7 16685 prmdvdsncoprmbd 16704 infpn2 16891 prmgaplem4 17032 fthres2 17903 ablfacrplem 20004 rnglidlmmgm 21162 psdmul 22060 monmat2matmon 22718 neiss 23003 uptx 23519 txcn 23520 nrmr0reg 23643 cnpflfi 23893 cnextcn 23961 caussi 25204 ovolsslem 25392 tgtrisegint 28433 inagswap 28775 shorth 31231 ac6mapd 32556 mptssALT 32606 uzssico 32714 zarclsint 33869 ordtconnlem1 33921 omsmon 34296 omssubadd 34298 subgrtrl 35127 subgrcycl 35129 acycgrsubgr 35152 mclsax 35563 trisegint 36023 segcon2 36100 opnrebl2 36316 bj-19.42t 36768 poimirlem30 37651 itg2addnclem 37672 itg2addnclem2 37673 fdc1 37747 totbndss 37778 ablo4pnp 37881 keridl 38033 dib2dim 41244 dih2dimbALTN 41246 dvh1dim 41443 mapdpglem2 41674 pell14qrss1234 42851 pell1qrss14 42863 rmxycomplete 42913 lnr2i 43112 fzunt 43451 fzuntd 43452 fzunt1d 43453 fzuntgd 43454 rp-fakeanorass 43509 rfcnnnub 45037 or2expropbi 47039 2ffzoeq 47332 ich2exprop 47476 nnsum4primes4 47794 nnsum4primesprm 47796 nnsum4primesgbe 47798 nnsum4primesle9 47800 opnneir 48899 |
| Copyright terms: Public domain | W3C validator |