| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > anim1d | Structured version Visualization version GIF version | ||
| Description: Add a conjunct to right of antecedent and consequent in a deduction. (Contributed by NM, 3-Apr-1994.) |
| Ref | Expression |
|---|---|
| anim1d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| anim1d | ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → (𝜒 ∧ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anim1d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | idd 24 | . 2 ⊢ (𝜑 → (𝜃 → 𝜃)) | |
| 3 | 1, 2 | anim12d 609 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → (𝜒 ∧ 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: pm3.45 622 exdistrf 2449 2ax6elem 2472 mopick2 2634 ssrexf 3997 ssrexvOLD 4004 rabss2 4026 ssdif 4093 ssrin 4191 reupick 4278 disjss1 5066 copsexgw 5433 copsexg 5434 propeqop 5450 po3nr 5542 frss 5583 coss2 5800 ordsssuc2 6404 fununi 6561 dffv2 6923 oprabidw 7383 poseq 8094 extmptsuppeq 8124 onfununi 8267 oaass 8482 ssnnfi 9086 fiint 9218 fiss 9315 wemapsolem 9443 elirrv 9490 tcss 9639 ac6s 10382 reclem2pr 10946 qbtwnxr 13101 ico0 13293 icoshft 13375 2ffzeq 13551 clsslem 14893 r19.2uz 15261 isprm7 16621 prmdvdsncoprmbd 16640 infpn2 16827 prmgaplem4 16968 fthres2 17843 chndss 18524 ablfacrplem 19981 rnglidlmmgm 21184 psdmul 22082 monmat2matmon 22740 neiss 23025 uptx 23541 txcn 23542 nrmr0reg 23665 cnpflfi 23915 cnextcn 23983 caussi 25225 ovolsslem 25413 tgtrisegint 28478 inagswap 28820 shorth 31277 ac6mapd 32608 mptssALT 32659 uzssico 32771 zarclsint 33906 ordtconnlem1 33958 omsmon 34332 omssubadd 34334 r1filimi 35135 subgrtrl 35198 subgrcycl 35200 acycgrsubgr 35223 mclsax 35634 trisegint 36093 segcon2 36170 opnrebl2 36386 bj-19.42t 36838 poimirlem30 37710 itg2addnclem 37731 itg2addnclem2 37732 fdc1 37806 totbndss 37837 ablo4pnp 37940 keridl 38092 dib2dim 41362 dih2dimbALTN 41364 dvh1dim 41561 mapdpglem2 41792 pell14qrss1234 42973 pell1qrss14 42985 rmxycomplete 43034 lnr2i 43233 fzunt 43572 fzuntd 43573 fzunt1d 43574 fzuntgd 43575 rp-fakeanorass 43630 rfcnnnub 45157 or2expropbi 47158 2ffzoeq 47451 ich2exprop 47595 nnsum4primes4 47913 nnsum4primesprm 47915 nnsum4primesgbe 47917 nnsum4primesle9 47919 opnneir 49031 |
| Copyright terms: Public domain | W3C validator |