![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > anim1d | Structured version Visualization version GIF version |
Description: Add a conjunct to right of antecedent and consequent in a deduction. (Contributed by NM, 3-Apr-1994.) |
Ref | Expression |
---|---|
anim1d.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
anim1d | ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → (𝜒 ∧ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anim1d.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | idd 24 | . 2 ⊢ (𝜑 → (𝜃 → 𝜃)) | |
3 | 1, 2 | anim12d 608 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → (𝜒 ∧ 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: pm3.45 621 exdistrf 2455 2ax6elem 2478 mopick2 2640 ssrexf 4075 ssrexvOLD 4082 ssdif 4167 ssrin 4263 reupick 4348 disjss1 5139 copsexgw 5510 copsexg 5511 propeqop 5526 po3nr 5623 frss 5664 coss2 5881 ordsssuc2 6486 fununi 6653 dffv2 7017 oprabidw 7479 poseq 8199 extmptsuppeq 8229 onfununi 8397 oaass 8617 ssnnfi 9235 ssnnfiOLD 9236 fiint 9394 fiintOLD 9395 fiss 9493 wemapsolem 9619 tcss 9813 ac6s 10553 reclem2pr 11117 qbtwnxr 13262 ico0 13453 icoshft 13533 2ffzeq 13706 clsslem 15033 r19.2uz 15400 isprm7 16755 prmdvdsncoprmbd 16774 infpn2 16960 prmgaplem4 17101 fthres2 17999 ablfacrplem 20109 rnglidlmmgm 21278 psdmul 22193 monmat2matmon 22851 neiss 23138 uptx 23654 txcn 23655 nrmr0reg 23778 cnpflfi 24028 cnextcn 24096 caussi 25350 ovolsslem 25538 tgtrisegint 28525 inagswap 28867 shorth 31327 mptssALT 32693 uzssico 32789 zarclsint 33818 ordtconnlem1 33870 omsmon 34263 omssubadd 34265 subgrtrl 35101 subgrcycl 35103 acycgrsubgr 35126 mclsax 35537 trisegint 35992 segcon2 36069 opnrebl2 36287 bj-19.42t 36739 poimirlem30 37610 itg2addnclem 37631 itg2addnclem2 37632 fdc1 37706 totbndss 37737 ablo4pnp 37840 keridl 37992 dib2dim 41200 dih2dimbALTN 41202 dvh1dim 41399 mapdpglem2 41630 pell14qrss1234 42812 pell1qrss14 42824 rmxycomplete 42874 lnr2i 43073 fzunt 43417 fzuntd 43418 fzunt1d 43419 fzuntgd 43420 rp-fakeanorass 43475 rfcnnnub 44936 or2expropbi 46949 2ffzoeq 47242 ich2exprop 47345 nnsum4primes4 47663 nnsum4primesprm 47665 nnsum4primesgbe 47667 nnsum4primesle9 47669 opnneir 48586 |
Copyright terms: Public domain | W3C validator |