![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reximdv2 | Structured version Visualization version GIF version |
Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 17-Sep-2003.) |
Ref | Expression |
---|---|
reximdv2.1 | ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) → (𝑥 ∈ 𝐵 ∧ 𝜒))) |
Ref | Expression |
---|---|
reximdv2 | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐵 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reximdv2.1 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) → (𝑥 ∈ 𝐵 ∧ 𝜒))) | |
2 | 1 | eximdv 1914 | . 2 ⊢ (𝜑 → (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜓) → ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜒))) |
3 | df-rex 3068 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) | |
4 | df-rex 3068 | . 2 ⊢ (∃𝑥 ∈ 𝐵 𝜒 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜒)) | |
5 | 2, 3, 4 | 3imtr4g 296 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐵 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∃wex 1775 ∈ wcel 2105 ∃wrex 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 |
This theorem depends on definitions: df-bi 207 df-ex 1776 df-rex 3068 |
This theorem is referenced by: reximdvai 3162 reximssdv 3170 ssrexvOLD 4068 ssimaex 6993 nnsuc 7904 oaass 8597 omeulem1 8618 ssnnfi 9207 findcard3 9315 findcard3OLD 9316 unfilem1 9340 epfrs 9768 alephval3 10147 isfin7-2 10433 fpwwe2lem12 10679 inawinalem 10726 ico0 13429 ioc0 13430 r19.2uz 15386 climrlim2 15579 prmdvdsncoprmbd 16760 iserodd 16868 ramub2 17047 prmgaplem6 17089 ghmqusnsglem2 19311 ghmquskerlem2 19315 ablfaclem3 20121 unitgrp 20399 restnlly 23505 llyrest 23508 nllyrest 23509 llyidm 23511 nllyidm 23512 cnpflfi 24022 cnextcn 24090 ivthlem3 25501 dvfsumrlim 26086 lgsquadlem2 27439 oppperpex 28775 outpasch 28777 ushgredgedg 29260 ushgredgedgloop 29262 cusgrfilem2 29488 nsgqusf1olem2 33421 ssmxidl 33481 cmppcmp 33818 eulerpartlemgvv 34357 eulerpartlemgh 34359 fnrelpredd 35081 erdszelem7 35181 rellysconn 35235 ivthALT 36317 fnessref 36339 phpreu 37590 poimirlem26 37632 itg2gt0cn 37661 frinfm 37721 sstotbnd2 37760 heiborlem3 37799 isdrngo3 37945 dihjat1lem 41410 dvh1dim 41424 dochsatshp 41433 mapdpglem2 41655 prjspreln0 42595 pellexlem5 42820 pell14qrss1234 42843 pell1qrss14 42855 lnr2i 43104 hbtlem6 43117 dflim5 43318 tfsconcatrn 43331 naddgeoa 43383 mnuop3d 44266 fvelsetpreimafv 47311 opnneir 48702 |
Copyright terms: Public domain | W3C validator |