| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reximdv2 | Structured version Visualization version GIF version | ||
| Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 17-Sep-2003.) |
| Ref | Expression |
|---|---|
| reximdv2.1 | ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) → (𝑥 ∈ 𝐵 ∧ 𝜒))) |
| Ref | Expression |
|---|---|
| reximdv2 | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐵 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reximdv2.1 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) → (𝑥 ∈ 𝐵 ∧ 𝜒))) | |
| 2 | 1 | eximdv 1918 | . 2 ⊢ (𝜑 → (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜓) → ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜒))) |
| 3 | df-rex 3057 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) | |
| 4 | df-rex 3057 | . 2 ⊢ (∃𝑥 ∈ 𝐵 𝜒 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜒)) | |
| 5 | 2, 3, 4 | 3imtr4g 296 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐵 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∃wex 1780 ∈ wcel 2111 ∃wrex 3056 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 df-rex 3057 |
| This theorem is referenced by: reximdvai 3143 reximssdv 3150 ssrexvOLD 4008 ssimaex 6907 nnsuc 7814 oaass 8476 omeulem1 8497 ssnnfi 9079 findcard3 9167 unfilem1 9189 epfrs 9621 alephval3 9998 isfin7-2 10284 fpwwe2lem12 10530 inawinalem 10577 ico0 13288 ioc0 13289 r19.2uz 15256 climrlim2 15451 prmdvdsncoprmbd 16635 iserodd 16744 ramub2 16923 prmgaplem6 16965 ghmqusnsglem2 19191 ghmquskerlem2 19195 ablfaclem3 19999 unitgrp 20299 restnlly 23395 llyrest 23398 nllyrest 23399 llyidm 23401 nllyidm 23402 cnpflfi 23912 cnextcn 23980 ivthlem3 25379 dvfsumrlim 25963 lgsquadlem2 27317 oppperpex 28729 outpasch 28731 ushgredgedg 29205 ushgredgedgloop 29207 cusgrfilem2 29433 nsgqusf1olem2 33374 ssmxidl 33434 cmppcmp 33866 eulerpartlemgvv 34384 eulerpartlemgh 34386 fnrelpredd 35097 r1filimi 35106 erdszelem7 35229 rellysconn 35283 ivthALT 36368 fnessref 36390 phpreu 37643 poimirlem26 37685 itg2gt0cn 37714 frinfm 37774 sstotbnd2 37813 heiborlem3 37852 isdrngo3 37998 dihjat1lem 41466 dvh1dim 41480 dochsatshp 41489 mapdpglem2 41711 prjspreln0 42641 pellexlem5 42865 pell14qrss1234 42888 pell1qrss14 42900 lnr2i 43148 hbtlem6 43161 dflim5 43361 tfsconcatrn 43374 naddgeoa 43426 mnuop3d 44303 fvelsetpreimafv 47417 opnneir 48937 |
| Copyright terms: Public domain | W3C validator |