| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reximdv2 | Structured version Visualization version GIF version | ||
| Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 17-Sep-2003.) |
| Ref | Expression |
|---|---|
| reximdv2.1 | ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) → (𝑥 ∈ 𝐵 ∧ 𝜒))) |
| Ref | Expression |
|---|---|
| reximdv2 | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐵 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reximdv2.1 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) → (𝑥 ∈ 𝐵 ∧ 𝜒))) | |
| 2 | 1 | eximdv 1917 | . 2 ⊢ (𝜑 → (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜓) → ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜒))) |
| 3 | df-rex 3061 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) | |
| 4 | df-rex 3061 | . 2 ⊢ (∃𝑥 ∈ 𝐵 𝜒 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜒)) | |
| 5 | 2, 3, 4 | 3imtr4g 296 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐵 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∃wex 1779 ∈ wcel 2108 ∃wrex 3060 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-rex 3061 |
| This theorem is referenced by: reximdvai 3151 reximssdv 3158 ssrexvOLD 4032 ssimaex 6964 nnsuc 7879 oaass 8573 omeulem1 8594 ssnnfi 9183 findcard3 9290 findcard3OLD 9291 unfilem1 9315 epfrs 9745 alephval3 10124 isfin7-2 10410 fpwwe2lem12 10656 inawinalem 10703 ico0 13408 ioc0 13409 r19.2uz 15370 climrlim2 15563 prmdvdsncoprmbd 16746 iserodd 16855 ramub2 17034 prmgaplem6 17076 ghmqusnsglem2 19264 ghmquskerlem2 19268 ablfaclem3 20070 unitgrp 20343 restnlly 23420 llyrest 23423 nllyrest 23424 llyidm 23426 nllyidm 23427 cnpflfi 23937 cnextcn 24005 ivthlem3 25406 dvfsumrlim 25990 lgsquadlem2 27344 oppperpex 28732 outpasch 28734 ushgredgedg 29208 ushgredgedgloop 29210 cusgrfilem2 29436 nsgqusf1olem2 33429 ssmxidl 33489 cmppcmp 33889 eulerpartlemgvv 34408 eulerpartlemgh 34410 fnrelpredd 35120 erdszelem7 35219 rellysconn 35273 ivthALT 36353 fnessref 36375 phpreu 37628 poimirlem26 37670 itg2gt0cn 37699 frinfm 37759 sstotbnd2 37798 heiborlem3 37837 isdrngo3 37983 dihjat1lem 41447 dvh1dim 41461 dochsatshp 41470 mapdpglem2 41692 prjspreln0 42632 pellexlem5 42856 pell14qrss1234 42879 pell1qrss14 42891 lnr2i 43140 hbtlem6 43153 dflim5 43353 tfsconcatrn 43366 naddgeoa 43418 mnuop3d 44295 fvelsetpreimafv 47401 opnneir 48881 |
| Copyright terms: Public domain | W3C validator |