![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reximdv2 | Structured version Visualization version GIF version |
Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 17-Sep-2003.) |
Ref | Expression |
---|---|
reximdv2.1 | ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) → (𝑥 ∈ 𝐵 ∧ 𝜒))) |
Ref | Expression |
---|---|
reximdv2 | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐵 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reximdv2.1 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) → (𝑥 ∈ 𝐵 ∧ 𝜒))) | |
2 | 1 | eximdv 1918 | . 2 ⊢ (𝜑 → (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜓) → ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜒))) |
3 | df-rex 3069 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) | |
4 | df-rex 3069 | . 2 ⊢ (∃𝑥 ∈ 𝐵 𝜒 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜒)) | |
5 | 2, 3, 4 | 3imtr4g 295 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐵 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∃wex 1779 ∈ wcel 2104 ∃wrex 3068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 |
This theorem depends on definitions: df-bi 206 df-ex 1780 df-rex 3069 |
This theorem is referenced by: reximdvai 3163 reximssdv 3170 ssrexv 4050 ssimaex 6975 nnsuc 7875 oaass 8563 omeulem1 8584 ssnnfi 9171 ssnnfiOLD 9172 findcard3 9287 findcard3OLD 9288 unfilem1 9312 epfrs 9728 alephval3 10107 isfin7-2 10393 fpwwe2lem12 10639 inawinalem 10686 ico0 13374 ioc0 13375 r19.2uz 15302 climrlim2 15495 prmdvdsncoprmbd 16667 iserodd 16772 ramub2 16951 prmgaplem6 16993 ablfaclem3 19998 unitgrp 20274 restnlly 23206 llyrest 23209 nllyrest 23210 llyidm 23212 nllyidm 23213 cnpflfi 23723 cnextcn 23791 ivthlem3 25202 dvfsumrlim 25783 lgsquadlem2 27120 oppperpex 28271 outpasch 28273 ushgredgedg 28753 ushgredgedgloop 28755 cusgrfilem2 28980 nsgqusf1olem2 32799 ghmquskerlem2 32804 ssmxidl 32864 cmppcmp 33136 eulerpartlemgvv 33673 eulerpartlemgh 33675 fnrelpredd 34390 erdszelem7 34486 rellysconn 34540 ivthALT 35523 fnessref 35545 phpreu 36775 poimirlem26 36817 itg2gt0cn 36846 frinfm 36906 sstotbnd2 36945 heiborlem3 36984 isdrngo3 37130 dihjat1lem 40602 dvh1dim 40616 dochsatshp 40625 mapdpglem2 40847 prjspreln0 41653 pellexlem5 41873 pell14qrss1234 41896 pell1qrss14 41908 lnr2i 42160 hbtlem6 42173 dflim5 42381 tfsconcatrn 42394 naddgeoa 42447 mnuop3d 43332 fvelsetpreimafv 46353 opnneir 47626 |
Copyright terms: Public domain | W3C validator |