![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reximdv2 | Structured version Visualization version GIF version |
Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 17-Sep-2003.) |
Ref | Expression |
---|---|
reximdv2.1 | ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) → (𝑥 ∈ 𝐵 ∧ 𝜒))) |
Ref | Expression |
---|---|
reximdv2 | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐵 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reximdv2.1 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) → (𝑥 ∈ 𝐵 ∧ 𝜒))) | |
2 | 1 | eximdv 1920 | . 2 ⊢ (𝜑 → (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜓) → ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜒))) |
3 | df-rex 3071 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) | |
4 | df-rex 3071 | . 2 ⊢ (∃𝑥 ∈ 𝐵 𝜒 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜒)) | |
5 | 2, 3, 4 | 3imtr4g 295 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐵 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∃wex 1781 ∈ wcel 2106 ∃wrex 3070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 |
This theorem depends on definitions: df-bi 206 df-ex 1782 df-rex 3071 |
This theorem is referenced by: reximdvai 3165 reximssdv 3172 ssrexv 4051 ssimaex 6976 nnsuc 7872 oaass 8560 omeulem1 8581 ssnnfi 9168 ssnnfiOLD 9169 findcard3 9284 findcard3OLD 9285 unfilem1 9309 epfrs 9725 alephval3 10104 isfin7-2 10390 fpwwe2lem12 10636 inawinalem 10683 ico0 13369 ioc0 13370 r19.2uz 15297 climrlim2 15490 prmdvdsncoprmbd 16662 iserodd 16767 ramub2 16946 prmgaplem6 16988 ablfaclem3 19956 unitgrp 20196 restnlly 22985 llyrest 22988 nllyrest 22989 llyidm 22991 nllyidm 22992 cnpflfi 23502 cnextcn 23570 ivthlem3 24969 dvfsumrlim 25547 lgsquadlem2 26881 oppperpex 28001 outpasch 28003 ushgredgedg 28483 ushgredgedgloop 28485 cusgrfilem2 28710 nsgqusf1olem2 32520 ghmquskerlem2 32525 ssmxidl 32585 cmppcmp 32833 eulerpartlemgvv 33370 eulerpartlemgh 33372 fnrelpredd 34087 erdszelem7 34183 rellysconn 34237 ivthALT 35215 fnessref 35237 phpreu 36467 poimirlem26 36509 itg2gt0cn 36538 frinfm 36598 sstotbnd2 36637 heiborlem3 36676 isdrngo3 36822 dihjat1lem 40294 dvh1dim 40308 dochsatshp 40317 mapdpglem2 40539 prjspreln0 41352 pellexlem5 41561 pell14qrss1234 41584 pell1qrss14 41596 lnr2i 41848 hbtlem6 41861 dflim5 42069 tfsconcatrn 42082 naddgeoa 42135 mnuop3d 43020 fvelsetpreimafv 46045 opnneir 47529 |
Copyright terms: Public domain | W3C validator |