| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reximdv2 | Structured version Visualization version GIF version | ||
| Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 17-Sep-2003.) |
| Ref | Expression |
|---|---|
| reximdv2.1 | ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) → (𝑥 ∈ 𝐵 ∧ 𝜒))) |
| Ref | Expression |
|---|---|
| reximdv2 | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐵 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reximdv2.1 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) → (𝑥 ∈ 𝐵 ∧ 𝜒))) | |
| 2 | 1 | eximdv 1917 | . 2 ⊢ (𝜑 → (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜓) → ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜒))) |
| 3 | df-rex 3055 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) | |
| 4 | df-rex 3055 | . 2 ⊢ (∃𝑥 ∈ 𝐵 𝜒 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜒)) | |
| 5 | 2, 3, 4 | 3imtr4g 296 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐵 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∃wex 1779 ∈ wcel 2109 ∃wrex 3054 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-rex 3055 |
| This theorem is referenced by: reximdvai 3145 reximssdv 3152 ssrexvOLD 4023 ssimaex 6949 nnsuc 7863 oaass 8528 omeulem1 8549 ssnnfi 9139 findcard3 9236 findcard3OLD 9237 unfilem1 9261 epfrs 9691 alephval3 10070 isfin7-2 10356 fpwwe2lem12 10602 inawinalem 10649 ico0 13359 ioc0 13360 r19.2uz 15325 climrlim2 15520 prmdvdsncoprmbd 16704 iserodd 16813 ramub2 16992 prmgaplem6 17034 ghmqusnsglem2 19220 ghmquskerlem2 19224 ablfaclem3 20026 unitgrp 20299 restnlly 23376 llyrest 23379 nllyrest 23380 llyidm 23382 nllyidm 23383 cnpflfi 23893 cnextcn 23961 ivthlem3 25361 dvfsumrlim 25945 lgsquadlem2 27299 oppperpex 28687 outpasch 28689 ushgredgedg 29163 ushgredgedgloop 29165 cusgrfilem2 29391 nsgqusf1olem2 33392 ssmxidl 33452 cmppcmp 33855 eulerpartlemgvv 34374 eulerpartlemgh 34376 fnrelpredd 35086 erdszelem7 35191 rellysconn 35245 ivthALT 36330 fnessref 36352 phpreu 37605 poimirlem26 37647 itg2gt0cn 37676 frinfm 37736 sstotbnd2 37775 heiborlem3 37814 isdrngo3 37960 dihjat1lem 41429 dvh1dim 41443 dochsatshp 41452 mapdpglem2 41674 prjspreln0 42604 pellexlem5 42828 pell14qrss1234 42851 pell1qrss14 42863 lnr2i 43112 hbtlem6 43125 dflim5 43325 tfsconcatrn 43338 naddgeoa 43390 mnuop3d 44267 fvelsetpreimafv 47392 opnneir 48899 |
| Copyright terms: Public domain | W3C validator |