![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reximdv2 | Structured version Visualization version GIF version |
Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 17-Sep-2003.) |
Ref | Expression |
---|---|
reximdv2.1 | ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) → (𝑥 ∈ 𝐵 ∧ 𝜒))) |
Ref | Expression |
---|---|
reximdv2 | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐵 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reximdv2.1 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) → (𝑥 ∈ 𝐵 ∧ 𝜒))) | |
2 | 1 | eximdv 1912 | . 2 ⊢ (𝜑 → (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜓) → ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜒))) |
3 | df-rex 3068 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) | |
4 | df-rex 3068 | . 2 ⊢ (∃𝑥 ∈ 𝐵 𝜒 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜒)) | |
5 | 2, 3, 4 | 3imtr4g 295 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐵 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∃wex 1773 ∈ wcel 2098 ∃wrex 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 |
This theorem depends on definitions: df-bi 206 df-ex 1774 df-rex 3068 |
This theorem is referenced by: reximdvai 3162 reximssdv 3170 ssrexv 4051 ssimaex 6988 nnsuc 7896 oaass 8590 omeulem1 8611 ssnnfi 9202 ssnnfiOLD 9203 findcard3 9318 findcard3OLD 9319 unfilem1 9343 epfrs 9764 alephval3 10143 isfin7-2 10429 fpwwe2lem12 10675 inawinalem 10722 ico0 13412 ioc0 13413 r19.2uz 15340 climrlim2 15533 prmdvdsncoprmbd 16708 iserodd 16813 ramub2 16992 prmgaplem6 17034 ghmquskerlem2 19250 ablfaclem3 20058 unitgrp 20336 restnlly 23414 llyrest 23417 nllyrest 23418 llyidm 23420 nllyidm 23421 cnpflfi 23931 cnextcn 23999 ivthlem3 25410 dvfsumrlim 25994 lgsquadlem2 27342 oppperpex 28585 outpasch 28587 ushgredgedg 29070 ushgredgedgloop 29072 cusgrfilem2 29298 nsgqusf1olem2 33157 ghmqusnsglem2 33163 ssmxidl 33220 cmppcmp 33500 eulerpartlemgvv 34037 eulerpartlemgh 34039 fnrelpredd 34753 erdszelem7 34848 rellysconn 34902 ivthALT 35860 fnessref 35882 phpreu 37118 poimirlem26 37160 itg2gt0cn 37189 frinfm 37249 sstotbnd2 37288 heiborlem3 37327 isdrngo3 37473 dihjat1lem 40941 dvh1dim 40955 dochsatshp 40964 mapdpglem2 41186 prjspreln0 42082 pellexlem5 42302 pell14qrss1234 42325 pell1qrss14 42337 lnr2i 42589 hbtlem6 42602 dflim5 42807 tfsconcatrn 42820 naddgeoa 42873 mnuop3d 43757 fvelsetpreimafv 46774 opnneir 48021 |
Copyright terms: Public domain | W3C validator |