| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reximdv2 | Structured version Visualization version GIF version | ||
| Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 17-Sep-2003.) |
| Ref | Expression |
|---|---|
| reximdv2.1 | ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) → (𝑥 ∈ 𝐵 ∧ 𝜒))) |
| Ref | Expression |
|---|---|
| reximdv2 | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐵 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reximdv2.1 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) → (𝑥 ∈ 𝐵 ∧ 𝜒))) | |
| 2 | 1 | eximdv 1917 | . 2 ⊢ (𝜑 → (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜓) → ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜒))) |
| 3 | df-rex 3054 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) | |
| 4 | df-rex 3054 | . 2 ⊢ (∃𝑥 ∈ 𝐵 𝜒 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜒)) | |
| 5 | 2, 3, 4 | 3imtr4g 296 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐵 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∃wex 1779 ∈ wcel 2109 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-rex 3054 |
| This theorem is referenced by: reximdvai 3140 reximssdv 3147 ssrexvOLD 4011 ssimaex 6912 nnsuc 7824 oaass 8486 omeulem1 8507 ssnnfi 9093 findcard3 9187 findcard3OLD 9188 unfilem1 9212 epfrs 9646 alephval3 10023 isfin7-2 10309 fpwwe2lem12 10555 inawinalem 10602 ico0 13312 ioc0 13313 r19.2uz 15277 climrlim2 15472 prmdvdsncoprmbd 16656 iserodd 16765 ramub2 16944 prmgaplem6 16986 ghmqusnsglem2 19178 ghmquskerlem2 19182 ablfaclem3 19986 unitgrp 20286 restnlly 23385 llyrest 23388 nllyrest 23389 llyidm 23391 nllyidm 23392 cnpflfi 23902 cnextcn 23970 ivthlem3 25370 dvfsumrlim 25954 lgsquadlem2 27308 oppperpex 28716 outpasch 28718 ushgredgedg 29192 ushgredgedgloop 29194 cusgrfilem2 29420 nsgqusf1olem2 33361 ssmxidl 33421 cmppcmp 33824 eulerpartlemgvv 34343 eulerpartlemgh 34345 fnrelpredd 35055 erdszelem7 35169 rellysconn 35223 ivthALT 36308 fnessref 36330 phpreu 37583 poimirlem26 37625 itg2gt0cn 37654 frinfm 37714 sstotbnd2 37753 heiborlem3 37792 isdrngo3 37938 dihjat1lem 41407 dvh1dim 41421 dochsatshp 41430 mapdpglem2 41652 prjspreln0 42582 pellexlem5 42806 pell14qrss1234 42829 pell1qrss14 42841 lnr2i 43089 hbtlem6 43102 dflim5 43302 tfsconcatrn 43315 naddgeoa 43367 mnuop3d 44244 fvelsetpreimafv 47372 opnneir 48892 |
| Copyright terms: Public domain | W3C validator |