Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reximdv2 | Structured version Visualization version GIF version |
Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 17-Sep-2003.) |
Ref | Expression |
---|---|
reximdv2.1 | ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) → (𝑥 ∈ 𝐵 ∧ 𝜒))) |
Ref | Expression |
---|---|
reximdv2 | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐵 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reximdv2.1 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) → (𝑥 ∈ 𝐵 ∧ 𝜒))) | |
2 | 1 | eximdv 1921 | . 2 ⊢ (𝜑 → (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜓) → ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜒))) |
3 | df-rex 3069 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) | |
4 | df-rex 3069 | . 2 ⊢ (∃𝑥 ∈ 𝐵 𝜒 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜒)) | |
5 | 2, 3, 4 | 3imtr4g 295 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐵 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∃wex 1783 ∈ wcel 2108 ∃wrex 3064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 |
This theorem depends on definitions: df-bi 206 df-ex 1784 df-rex 3069 |
This theorem is referenced by: reximdvai 3199 reximssdv 3204 ssrexv 3984 ssimaex 6835 nnsuc 7705 oaass 8354 omeulem1 8375 ssnnfi 8914 ssnnfiOLD 8915 findcard3 8987 unfilem1 9008 trpredrec 9415 epfrs 9420 alephval3 9797 isfin7-2 10083 fpwwe2lem12 10329 inawinalem 10376 ico0 13054 ioc0 13055 r19.2uz 14991 climrlim2 15184 prmdvdsncoprmbd 16359 iserodd 16464 ramub2 16643 prmgaplem6 16685 ablfaclem3 19605 unitgrp 19824 restnlly 22541 llyrest 22544 nllyrest 22545 llyidm 22547 nllyidm 22548 cnpflfi 23058 cnextcn 23126 ivthlem3 24522 dvfsumrlim 25100 lgsquadlem2 26434 oppperpex 27018 outpasch 27020 ushgredgedg 27499 ushgredgedgloop 27501 cusgrfilem2 27726 nsgqusf1olem2 31501 ssmxidl 31544 cmppcmp 31710 eulerpartlemgvv 32243 eulerpartlemgh 32245 fnrelpredd 32961 erdszelem7 33059 rellysconn 33113 ivthALT 34451 fnessref 34473 phpreu 35688 poimirlem26 35730 itg2gt0cn 35759 frinfm 35820 sstotbnd2 35859 heiborlem3 35898 isdrngo3 36044 dihjat1lem 39369 dvh1dim 39383 dochsatshp 39392 mapdpglem2 39614 prjspreln0 40369 pellexlem5 40571 pell14qrss1234 40594 pell1qrss14 40606 lnr2i 40857 hbtlem6 40870 mnuop3d 41778 fvelsetpreimafv 44727 opnneir 46088 |
Copyright terms: Public domain | W3C validator |