| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reximdv2 | Structured version Visualization version GIF version | ||
| Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 17-Sep-2003.) |
| Ref | Expression |
|---|---|
| reximdv2.1 | ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) → (𝑥 ∈ 𝐵 ∧ 𝜒))) |
| Ref | Expression |
|---|---|
| reximdv2 | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐵 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reximdv2.1 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) → (𝑥 ∈ 𝐵 ∧ 𝜒))) | |
| 2 | 1 | eximdv 1918 | . 2 ⊢ (𝜑 → (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜓) → ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜒))) |
| 3 | df-rex 3058 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) | |
| 4 | df-rex 3058 | . 2 ⊢ (∃𝑥 ∈ 𝐵 𝜒 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜒)) | |
| 5 | 2, 3, 4 | 3imtr4g 296 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐵 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∃wex 1780 ∈ wcel 2113 ∃wrex 3057 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 df-rex 3058 |
| This theorem is referenced by: reximdvai 3144 reximssdv 3151 ssrexvOLD 4004 ssimaex 6913 nnsuc 7820 oaass 8482 omeulem1 8503 ssnnfi 9086 findcard3 9174 unfilem1 9196 epfrs 9628 alephval3 10008 isfin7-2 10294 fpwwe2lem12 10540 inawinalem 10587 ico0 13293 ioc0 13294 r19.2uz 15261 climrlim2 15456 prmdvdsncoprmbd 16640 iserodd 16749 ramub2 16928 prmgaplem6 16970 ghmqusnsglem2 19195 ghmquskerlem2 19199 ablfaclem3 20003 unitgrp 20303 restnlly 23398 llyrest 23401 nllyrest 23402 llyidm 23404 nllyidm 23405 cnpflfi 23915 cnextcn 23983 ivthlem3 25382 dvfsumrlim 25966 lgsquadlem2 27320 oppperpex 28732 outpasch 28734 ushgredgedg 29209 ushgredgedgloop 29211 cusgrfilem2 29437 nsgqusf1olem2 33386 ssmxidl 33446 cmppcmp 33892 eulerpartlemgvv 34410 eulerpartlemgh 34412 fnrelpredd 35123 r1filimi 35135 erdszelem7 35262 rellysconn 35316 ivthALT 36400 fnessref 36422 phpreu 37664 poimirlem26 37706 itg2gt0cn 37735 frinfm 37795 sstotbnd2 37834 heiborlem3 37873 isdrngo3 38019 dihjat1lem 41547 dvh1dim 41561 dochsatshp 41570 mapdpglem2 41792 prjspreln0 42727 pellexlem5 42950 pell14qrss1234 42973 pell1qrss14 42985 lnr2i 43233 hbtlem6 43246 dflim5 43446 tfsconcatrn 43459 naddgeoa 43511 mnuop3d 44388 fvelsetpreimafv 47511 opnneir 49031 |
| Copyright terms: Public domain | W3C validator |