| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reximdv2 | Structured version Visualization version GIF version | ||
| Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 17-Sep-2003.) |
| Ref | Expression |
|---|---|
| reximdv2.1 | ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) → (𝑥 ∈ 𝐵 ∧ 𝜒))) |
| Ref | Expression |
|---|---|
| reximdv2 | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐵 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reximdv2.1 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) → (𝑥 ∈ 𝐵 ∧ 𝜒))) | |
| 2 | 1 | eximdv 1917 | . 2 ⊢ (𝜑 → (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜓) → ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜒))) |
| 3 | df-rex 3054 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) | |
| 4 | df-rex 3054 | . 2 ⊢ (∃𝑥 ∈ 𝐵 𝜒 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜒)) | |
| 5 | 2, 3, 4 | 3imtr4g 296 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐵 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∃wex 1779 ∈ wcel 2109 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-rex 3054 |
| This theorem is referenced by: reximdvai 3144 reximssdv 3151 ssrexvOLD 4020 ssimaex 6946 nnsuc 7860 oaass 8525 omeulem1 8546 ssnnfi 9133 findcard3 9229 findcard3OLD 9230 unfilem1 9254 epfrs 9684 alephval3 10063 isfin7-2 10349 fpwwe2lem12 10595 inawinalem 10642 ico0 13352 ioc0 13353 r19.2uz 15318 climrlim2 15513 prmdvdsncoprmbd 16697 iserodd 16806 ramub2 16985 prmgaplem6 17027 ghmqusnsglem2 19213 ghmquskerlem2 19217 ablfaclem3 20019 unitgrp 20292 restnlly 23369 llyrest 23372 nllyrest 23373 llyidm 23375 nllyidm 23376 cnpflfi 23886 cnextcn 23954 ivthlem3 25354 dvfsumrlim 25938 lgsquadlem2 27292 oppperpex 28680 outpasch 28682 ushgredgedg 29156 ushgredgedgloop 29158 cusgrfilem2 29384 nsgqusf1olem2 33385 ssmxidl 33445 cmppcmp 33848 eulerpartlemgvv 34367 eulerpartlemgh 34369 fnrelpredd 35079 erdszelem7 35184 rellysconn 35238 ivthALT 36323 fnessref 36345 phpreu 37598 poimirlem26 37640 itg2gt0cn 37669 frinfm 37729 sstotbnd2 37768 heiborlem3 37807 isdrngo3 37953 dihjat1lem 41422 dvh1dim 41436 dochsatshp 41445 mapdpglem2 41667 prjspreln0 42597 pellexlem5 42821 pell14qrss1234 42844 pell1qrss14 42856 lnr2i 43105 hbtlem6 43118 dflim5 43318 tfsconcatrn 43331 naddgeoa 43383 mnuop3d 44260 fvelsetpreimafv 47388 opnneir 48895 |
| Copyright terms: Public domain | W3C validator |