Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reximdv2 | Structured version Visualization version GIF version |
Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 17-Sep-2003.) |
Ref | Expression |
---|---|
reximdv2.1 | ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) → (𝑥 ∈ 𝐵 ∧ 𝜒))) |
Ref | Expression |
---|---|
reximdv2 | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐵 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reximdv2.1 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) → (𝑥 ∈ 𝐵 ∧ 𝜒))) | |
2 | 1 | eximdv 1920 | . 2 ⊢ (𝜑 → (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜓) → ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜒))) |
3 | df-rex 3070 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) | |
4 | df-rex 3070 | . 2 ⊢ (∃𝑥 ∈ 𝐵 𝜒 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜒)) | |
5 | 2, 3, 4 | 3imtr4g 296 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐵 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∃wex 1782 ∈ wcel 2106 ∃wrex 3065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 |
This theorem depends on definitions: df-bi 206 df-ex 1783 df-rex 3070 |
This theorem is referenced by: reximdvai 3200 reximssdv 3205 ssrexv 3988 ssimaex 6853 nnsuc 7730 oaass 8392 omeulem1 8413 ssnnfi 8952 ssnnfiOLD 8953 findcard3 9057 unfilem1 9078 epfrs 9489 alephval3 9866 isfin7-2 10152 fpwwe2lem12 10398 inawinalem 10445 ico0 13125 ioc0 13126 r19.2uz 15063 climrlim2 15256 prmdvdsncoprmbd 16431 iserodd 16536 ramub2 16715 prmgaplem6 16757 ablfaclem3 19690 unitgrp 19909 restnlly 22633 llyrest 22636 nllyrest 22637 llyidm 22639 nllyidm 22640 cnpflfi 23150 cnextcn 23218 ivthlem3 24617 dvfsumrlim 25195 lgsquadlem2 26529 oppperpex 27114 outpasch 27116 ushgredgedg 27596 ushgredgedgloop 27598 cusgrfilem2 27823 nsgqusf1olem2 31599 ssmxidl 31642 cmppcmp 31808 eulerpartlemgvv 32343 eulerpartlemgh 32345 fnrelpredd 33061 erdszelem7 33159 rellysconn 33213 ivthALT 34524 fnessref 34546 phpreu 35761 poimirlem26 35803 itg2gt0cn 35832 frinfm 35893 sstotbnd2 35932 heiborlem3 35971 isdrngo3 36117 dihjat1lem 39442 dvh1dim 39456 dochsatshp 39465 mapdpglem2 39687 prjspreln0 40448 pellexlem5 40655 pell14qrss1234 40678 pell1qrss14 40690 lnr2i 40941 hbtlem6 40954 mnuop3d 41889 fvelsetpreimafv 44839 opnneir 46200 |
Copyright terms: Public domain | W3C validator |