Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssrexv | Structured version Visualization version GIF version |
Description: Existential quantification restricted to a subclass. (Contributed by NM, 11-Jan-2007.) |
Ref | Expression |
---|---|
ssrexv | ⊢ (𝐴 ⊆ 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐵 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3915 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
2 | 1 | anim1d 611 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ∧ 𝜑) → (𝑥 ∈ 𝐵 ∧ 𝜑))) |
3 | 2 | reximdv2 3200 | 1 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐵 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2107 ∃wrex 3066 ⊆ wss 3888 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2069 df-clab 2717 df-cleq 2731 df-clel 2817 df-rex 3071 df-v 3435 df-in 3895 df-ss 3905 |
This theorem is referenced by: ss2rexv 3991 ssn0rex 4290 iunss1 4939 onfr 6309 moriotass 7274 frxp 7976 frfi 9068 fisupcl 9237 supgtoreq 9238 brwdom3 9350 unwdomg 9352 frmin 9516 tcrank 9651 hsmexlem2 10192 pwfseqlem3 10425 grur1 10585 suplem1pr 10817 fimaxre2 11929 fiminre2 11932 suprfinzcl 12445 lbzbi 12685 suprzub 12688 uzsupss 12689 zmin 12693 ssnn0fi 13714 elss2prb 14210 scshwfzeqfzo 14548 rexico 15074 rlim3 15216 rlimclim 15264 caurcvgr 15394 alzdvds 16038 bitsfzolem 16150 pclem 16548 0ram2 16731 0ramcl 16733 symgextfo 19039 lsmless1x 19258 lsmless2x 19259 dprdss 19641 ablfac2 19701 subrgdvds 20047 ssrest 22336 locfincf 22691 fbun 23000 fgss 23033 isucn2 23440 metust 23723 psmetutop 23732 lebnumlem3 24135 lebnum 24136 cfil3i 24442 cfilss 24443 fgcfil 24444 iscau4 24452 ivthle 24629 ivthle2 24630 lhop1lem 25186 lhop2 25188 ply1divex 25310 plyss 25369 dgrlem 25399 elqaa 25491 aannenlem2 25498 reeff1olem 25614 rlimcnp 26124 ftalem3 26233 2sqreultblem 26605 2sqreunnlem1 26606 2sqreunnltblem 26608 pntlem3 26766 tgisline 26997 axcontlem2 27342 frgrwopreg1 28691 frgrwopreg2 28692 shless 29730 xlt2addrd 31090 ssnnssfz 31117 xreceu 31205 archirngz 31452 archiabllem1b 31455 locfinreflem 31799 crefss 31808 esumpcvgval 32055 sigaclci 32109 eulerpartlemgvv 32352 eulerpartlemgh 32354 signsply0 32539 iccllysconn 33221 satfvsucsuc 33336 madess 34068 fgmin 34568 knoppndvlem18 34718 poimirlem26 35812 poimirlem30 35816 volsupnfl 35831 cover2 35881 filbcmb 35907 istotbnd3 35938 sstotbnd 35942 heibor1lem 35976 isdrngo2 36125 isdrngo3 36126 qsss1 36431 islsati 37015 paddss1 37838 paddss2 37839 hdmap14lem2a 39888 prjspreln0 40455 pellfundre 40710 pellfundge 40711 pellfundglb 40714 hbtlem3 40959 hbtlem5 40960 itgoss 40995 radcnvrat 41939 uzubico 43113 uzubico2 43115 climleltrp 43224 fourierdlem20 43675 smflimlem2 44317 iccelpart 44896 fmtnofac2 45032 ssnn0ssfz 45696 pgrpgt2nabl 45713 eenglngeehlnmlem1 46094 |
Copyright terms: Public domain | W3C validator |