| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssrexv | Structured version Visualization version GIF version | ||
| Description: Existential quantification restricted to a subclass. (Contributed by NM, 11-Jan-2007.) Avoid axioms. (Revised by GG, 19-May-2025.) |
| Ref | Expression |
|---|---|
| ssrexv | ⊢ (𝐴 ⊆ 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐵 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ss 3931 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 2 | pm3.45 622 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) → ((𝑥 ∈ 𝐴 ∧ 𝜑) → (𝑥 ∈ 𝐵 ∧ 𝜑))) | |
| 3 | 2 | aleximi 1832 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) → (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) → ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜑))) |
| 4 | df-rex 3054 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 5 | df-rex 3054 | . . 3 ⊢ (∃𝑥 ∈ 𝐵 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜑)) | |
| 6 | 3, 4, 5 | 3imtr4g 296 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) → (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐵 𝜑)) |
| 7 | 1, 6 | sylbi 217 | 1 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐵 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 ∃wex 1779 ∈ wcel 2109 ∃wrex 3053 ⊆ wss 3914 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-rex 3054 df-ss 3931 |
| This theorem is referenced by: ss2rexv 4018 ssn0rex 4321 iunss1 4970 onfr 6371 moriotass 7376 frxp 8105 frfi 9232 fisupcl 9421 supgtoreq 9422 brwdom3 9535 unwdomg 9537 frmin 9702 tcrank 9837 hsmexlem2 10380 pwfseqlem3 10613 grur1 10773 suplem1pr 11005 fimaxre2 12128 fiminre2 12131 suprfinzcl 12648 lbzbi 12895 suprzub 12898 uzsupss 12899 zmin 12903 ssnn0fi 13950 elss2prb 14453 scshwfzeqfzo 14792 rexico 15320 rlim3 15464 rlimclim 15512 caurcvgr 15640 alzdvds 16290 bitsfzolem 16404 pclem 16809 0ram2 16992 0ramcl 16994 symgextfo 19352 lsmless1x 19574 lsmless2x 19575 dprdss 19961 ablfac2 20021 subrgdvds 20495 ssrest 23063 locfincf 23418 fbun 23727 fgss 23760 isucn2 24166 metust 24446 psmetutop 24455 lebnumlem3 24862 lebnum 24863 cfil3i 25169 cfilss 25170 fgcfil 25171 iscau4 25179 ivthle 25357 ivthle2 25358 lhop1lem 25918 lhop2 25920 ply1divex 26042 plyss 26104 dgrlem 26134 elqaa 26230 aannenlem2 26237 reeff1olem 26356 rlimcnp 26875 ftalem3 26985 2sqreultblem 27359 2sqreunnlem1 27360 2sqreunnltblem 27362 pntlem3 27520 madess 27788 addsuniflem 27908 mulsuniflem 28052 tgisline 28554 axcontlem2 28892 frgrwopreg1 30247 frgrwopreg2 30248 shless 31288 xlt2addrd 32682 ssnnssfz 32710 xreceu 32842 archirngz 33143 archiabllem1b 33146 1arithidom 33508 dfufd2lem 33520 locfinreflem 33830 crefss 33839 esumpcvgval 34068 sigaclci 34122 eulerpartlemgvv 34367 eulerpartlemgh 34369 signsply0 34542 iccllysconn 35237 satfvsucsuc 35352 fgmin 36358 knoppndvlem18 36517 poimirlem26 37640 poimirlem30 37644 volsupnfl 37659 cover2 37709 filbcmb 37734 istotbnd3 37765 sstotbnd 37769 heibor1lem 37803 isdrngo2 37952 isdrngo3 37953 qsss1 38277 islsati 38987 paddss1 39811 paddss2 39812 hdmap14lem2a 41861 prjspreln0 42597 pellfundre 42869 pellfundge 42870 pellfundglb 42873 hbtlem3 43116 hbtlem5 43117 itgoss 43152 radcnvrat 44303 uzubico 45564 uzubico2 45566 climleltrp 45674 fourierdlem20 46125 smflimlem2 46770 iccelpart 47434 fmtnofac2 47570 grtriprop 47940 ssnn0ssfz 48337 pgrpgt2nabl 48354 eenglngeehlnmlem1 48726 |
| Copyright terms: Public domain | W3C validator |