![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssrexv | Structured version Visualization version GIF version |
Description: Existential quantification restricted to a subclass. (Contributed by NM, 11-Jan-2007.) |
Ref | Expression |
---|---|
ssrexv | ⊢ (𝐴 ⊆ 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐵 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3889 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
2 | 1 | anim1d 610 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ∧ 𝜑) → (𝑥 ∈ 𝐵 ∧ 𝜑))) |
3 | 2 | reximdv2 3236 | 1 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐵 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2083 ∃wrex 3108 ⊆ wss 3865 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-ext 2771 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-clab 2778 df-cleq 2790 df-clel 2865 df-rex 3113 df-in 3872 df-ss 3880 |
This theorem is referenced by: ss2rexv 3963 ssn0rex 4241 iunss1 4844 onfr 6112 moriotass 7013 frxp 7680 frfi 8616 fisupcl 8786 supgtoreq 8787 brwdom3 8899 unwdomg 8901 tcrank 9166 hsmexlem2 9702 pwfseqlem3 9935 grur1 10095 suplem1pr 10327 fimaxre2 11440 suprfinzcl 11951 lbzbi 12189 suprzub 12192 uzsupss 12193 zmin 12197 ssnn0fi 13207 elss2prb 13695 scshwfzeqfzo 14028 rexico 14551 rlim3 14693 rlimclim 14741 caurcvgr 14868 alzdvds 15507 bitsfzolem 15620 pclem 16008 0ram2 16190 0ramcl 16192 symgextfo 18285 lsmless1x 18503 lsmless2x 18504 dprdss 18872 ablfac2 18932 subrgdvds 19243 ssrest 21472 locfincf 21827 fbun 22136 fgss 22169 isucn2 22575 metust 22855 psmetutop 22864 lebnumlem3 23254 lebnum 23255 cfil3i 23559 cfilss 23560 fgcfil 23561 iscau4 23569 ivthle 23744 ivthle2 23745 lhop1lem 24297 lhop2 24299 ply1divex 24417 plyss 24476 dgrlem 24506 elqaa 24598 aannenlem2 24605 reeff1olem 24721 rlimcnp 25229 ftalem3 25338 2sqreultblem 25710 2sqreunnlem1 25711 2sqreunnltblem 25713 pntlem3 25871 tgisline 26099 axcontlem2 26438 frgrwopreg1 27785 frgrwopreg2 27786 shless 28823 xlt2addrd 30166 ssnnssfz 30194 xreceu 30278 archirngz 30452 archiabllem1b 30455 locfinreflem 30717 crefss 30726 esumpcvgval 30950 sigaclci 31004 eulerpartlemgvv 31247 eulerpartlemgh 31249 signsply0 31434 iccllysconn 32107 satfvsucsuc 32222 frmin 32695 fgmin 33329 knoppndvlem18 33479 poimirlem26 34470 poimirlem30 34474 volsupnfl 34489 cover2 34542 filbcmb 34568 istotbnd3 34602 sstotbnd 34606 heibor1lem 34640 isdrngo2 34789 isdrngo3 34790 qsss1 35098 islsati 35682 paddss1 36505 paddss2 36506 hdmap14lem2a 38555 prjspreln0 38777 pellfundre 38984 pellfundge 38985 pellfundglb 38988 hbtlem3 39233 hbtlem5 39234 itgoss 39269 radcnvrat 40205 fiminre2 41208 uzubico 41407 uzubico2 41409 climleltrp 41520 fourierdlem20 41976 smflimlem2 42612 iccelpart 43097 fmtnofac2 43235 ssnn0ssfz 43897 pgrpgt2nabl 43916 eenglngeehlnmlem1 44227 |
Copyright terms: Public domain | W3C validator |