![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssrexv | Structured version Visualization version GIF version |
Description: Existential quantification restricted to a subclass. (Contributed by NM, 11-Jan-2007.) Avoid axioms. (Revised by GG, 19-May-2025.) |
Ref | Expression |
---|---|
ssrexv | ⊢ (𝐴 ⊆ 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐵 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ss 3993 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
2 | pm3.45 621 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) → ((𝑥 ∈ 𝐴 ∧ 𝜑) → (𝑥 ∈ 𝐵 ∧ 𝜑))) | |
3 | 2 | aleximi 1830 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) → (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) → ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜑))) |
4 | df-rex 3077 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
5 | df-rex 3077 | . . 3 ⊢ (∃𝑥 ∈ 𝐵 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜑)) | |
6 | 3, 4, 5 | 3imtr4g 296 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) → (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐵 𝜑)) |
7 | 1, 6 | sylbi 217 | 1 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐵 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1535 ∃wex 1777 ∈ wcel 2108 ∃wrex 3076 ⊆ wss 3976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-rex 3077 df-ss 3993 |
This theorem is referenced by: ss2rexv 4080 ssn0rex 4381 iunss1 5029 onfr 6434 moriotass 7437 frxp 8167 frfi 9349 fisupcl 9538 supgtoreq 9539 brwdom3 9651 unwdomg 9653 frmin 9818 tcrank 9953 hsmexlem2 10496 pwfseqlem3 10729 grur1 10889 suplem1pr 11121 fimaxre2 12240 fiminre2 12243 suprfinzcl 12757 lbzbi 13001 suprzub 13004 uzsupss 13005 zmin 13009 ssnn0fi 14036 elss2prb 14537 scshwfzeqfzo 14875 rexico 15402 rlim3 15544 rlimclim 15592 caurcvgr 15722 alzdvds 16368 bitsfzolem 16480 pclem 16885 0ram2 17068 0ramcl 17070 symgextfo 19464 lsmless1x 19686 lsmless2x 19687 dprdss 20073 ablfac2 20133 subrgdvds 20614 ssrest 23205 locfincf 23560 fbun 23869 fgss 23902 isucn2 24309 metust 24592 psmetutop 24601 lebnumlem3 25014 lebnum 25015 cfil3i 25322 cfilss 25323 fgcfil 25324 iscau4 25332 ivthle 25510 ivthle2 25511 lhop1lem 26072 lhop2 26074 ply1divex 26196 plyss 26258 dgrlem 26288 elqaa 26382 aannenlem2 26389 reeff1olem 26508 rlimcnp 27026 ftalem3 27136 2sqreultblem 27510 2sqreunnlem1 27511 2sqreunnltblem 27513 pntlem3 27671 madess 27933 addsuniflem 28052 mulsuniflem 28193 tgisline 28653 axcontlem2 28998 frgrwopreg1 30350 frgrwopreg2 30351 shless 31391 xlt2addrd 32765 ssnnssfz 32792 xreceu 32886 archirngz 33169 archiabllem1b 33172 1arithidom 33530 dfufd2lem 33542 locfinreflem 33786 crefss 33795 esumpcvgval 34042 sigaclci 34096 eulerpartlemgvv 34341 eulerpartlemgh 34343 signsply0 34528 iccllysconn 35218 satfvsucsuc 35333 fgmin 36336 knoppndvlem18 36495 poimirlem26 37606 poimirlem30 37610 volsupnfl 37625 cover2 37675 filbcmb 37700 istotbnd3 37731 sstotbnd 37735 heibor1lem 37769 isdrngo2 37918 isdrngo3 37919 qsss1 38245 islsati 38950 paddss1 39774 paddss2 39775 hdmap14lem2a 41824 prjspreln0 42564 pellfundre 42837 pellfundge 42838 pellfundglb 42841 hbtlem3 43084 hbtlem5 43085 itgoss 43120 radcnvrat 44283 uzubico 45486 uzubico2 45488 climleltrp 45597 fourierdlem20 46048 smflimlem2 46693 iccelpart 47307 fmtnofac2 47443 grtriprop 47792 ssnn0ssfz 48074 pgrpgt2nabl 48091 eenglngeehlnmlem1 48471 |
Copyright terms: Public domain | W3C validator |