| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssrexv | Structured version Visualization version GIF version | ||
| Description: Existential quantification restricted to a subclass. (Contributed by NM, 11-Jan-2007.) Avoid axioms. (Revised by GG, 19-May-2025.) |
| Ref | Expression |
|---|---|
| ssrexv | ⊢ (𝐴 ⊆ 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐵 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ss 3948 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 2 | pm3.45 622 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) → ((𝑥 ∈ 𝐴 ∧ 𝜑) → (𝑥 ∈ 𝐵 ∧ 𝜑))) | |
| 3 | 2 | aleximi 1832 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) → (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) → ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜑))) |
| 4 | df-rex 3062 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 5 | df-rex 3062 | . . 3 ⊢ (∃𝑥 ∈ 𝐵 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜑)) | |
| 6 | 3, 4, 5 | 3imtr4g 296 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) → (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐵 𝜑)) |
| 7 | 1, 6 | sylbi 217 | 1 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐵 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 ∃wex 1779 ∈ wcel 2109 ∃wrex 3061 ⊆ wss 3931 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-rex 3062 df-ss 3948 |
| This theorem is referenced by: ss2rexv 4035 ssn0rex 4338 iunss1 4987 onfr 6396 moriotass 7399 frxp 8130 frfi 9298 fisupcl 9487 supgtoreq 9488 brwdom3 9601 unwdomg 9603 frmin 9768 tcrank 9903 hsmexlem2 10446 pwfseqlem3 10679 grur1 10839 suplem1pr 11071 fimaxre2 12192 fiminre2 12195 suprfinzcl 12712 lbzbi 12957 suprzub 12960 uzsupss 12961 zmin 12965 ssnn0fi 14008 elss2prb 14511 scshwfzeqfzo 14850 rexico 15377 rlim3 15519 rlimclim 15567 caurcvgr 15695 alzdvds 16344 bitsfzolem 16458 pclem 16863 0ram2 17046 0ramcl 17048 symgextfo 19408 lsmless1x 19630 lsmless2x 19631 dprdss 20017 ablfac2 20077 subrgdvds 20551 ssrest 23119 locfincf 23474 fbun 23783 fgss 23816 isucn2 24222 metust 24502 psmetutop 24511 lebnumlem3 24918 lebnum 24919 cfil3i 25226 cfilss 25227 fgcfil 25228 iscau4 25236 ivthle 25414 ivthle2 25415 lhop1lem 25975 lhop2 25977 ply1divex 26099 plyss 26161 dgrlem 26191 elqaa 26287 aannenlem2 26294 reeff1olem 26413 rlimcnp 26932 ftalem3 27042 2sqreultblem 27416 2sqreunnlem1 27417 2sqreunnltblem 27419 pntlem3 27577 madess 27845 addsuniflem 27965 mulsuniflem 28109 tgisline 28611 axcontlem2 28949 frgrwopreg1 30304 frgrwopreg2 30305 shless 31345 xlt2addrd 32741 ssnnssfz 32769 xreceu 32901 archirngz 33192 archiabllem1b 33195 1arithidom 33557 dfufd2lem 33569 locfinreflem 33876 crefss 33885 esumpcvgval 34114 sigaclci 34168 eulerpartlemgvv 34413 eulerpartlemgh 34415 signsply0 34588 iccllysconn 35277 satfvsucsuc 35392 fgmin 36393 knoppndvlem18 36552 poimirlem26 37675 poimirlem30 37679 volsupnfl 37694 cover2 37744 filbcmb 37769 istotbnd3 37800 sstotbnd 37804 heibor1lem 37838 isdrngo2 37987 isdrngo3 37988 qsss1 38312 islsati 39017 paddss1 39841 paddss2 39842 hdmap14lem2a 41891 prjspreln0 42607 pellfundre 42879 pellfundge 42880 pellfundglb 42883 hbtlem3 43126 hbtlem5 43127 itgoss 43162 radcnvrat 44313 uzubico 45575 uzubico2 45577 climleltrp 45685 fourierdlem20 46136 smflimlem2 46781 iccelpart 47427 fmtnofac2 47563 grtriprop 47933 ssnn0ssfz 48304 pgrpgt2nabl 48321 eenglngeehlnmlem1 48697 |
| Copyright terms: Public domain | W3C validator |