| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssrexv | Structured version Visualization version GIF version | ||
| Description: Existential quantification restricted to a subclass. (Contributed by NM, 11-Jan-2007.) Avoid axioms. (Revised by GG, 19-May-2025.) |
| Ref | Expression |
|---|---|
| ssrexv | ⊢ (𝐴 ⊆ 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐵 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ss 3919 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 2 | pm3.45 622 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) → ((𝑥 ∈ 𝐴 ∧ 𝜑) → (𝑥 ∈ 𝐵 ∧ 𝜑))) | |
| 3 | 2 | aleximi 1833 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) → (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) → ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜑))) |
| 4 | df-rex 3057 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 5 | df-rex 3057 | . . 3 ⊢ (∃𝑥 ∈ 𝐵 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜑)) | |
| 6 | 3, 4, 5 | 3imtr4g 296 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) → (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐵 𝜑)) |
| 7 | 1, 6 | sylbi 217 | 1 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐵 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1539 ∃wex 1780 ∈ wcel 2111 ∃wrex 3056 ⊆ wss 3902 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-rex 3057 df-ss 3919 |
| This theorem is referenced by: ss2rexv 4006 ssn0rex 4308 iunss1 4956 onfr 6345 moriotass 7335 frxp 8056 frfi 9169 fisupcl 9354 supgtoreq 9355 brwdom3 9468 unwdomg 9470 frmin 9639 tcrank 9774 hsmexlem2 10315 pwfseqlem3 10548 grur1 10708 suplem1pr 10940 fimaxre2 12064 fiminre2 12067 suprfinzcl 12584 lbzbi 12831 suprzub 12834 uzsupss 12835 zmin 12839 ssnn0fi 13889 elss2prb 14392 scshwfzeqfzo 14730 rexico 15258 rlim3 15402 rlimclim 15450 caurcvgr 15578 alzdvds 16228 bitsfzolem 16342 pclem 16747 0ram2 16930 0ramcl 16932 symgextfo 19332 lsmless1x 19554 lsmless2x 19555 dprdss 19941 ablfac2 20001 subrgdvds 20499 ssrest 23089 locfincf 23444 fbun 23753 fgss 23786 isucn2 24191 metust 24471 psmetutop 24480 lebnumlem3 24887 lebnum 24888 cfil3i 25194 cfilss 25195 fgcfil 25196 iscau4 25204 ivthle 25382 ivthle2 25383 lhop1lem 25943 lhop2 25945 ply1divex 26067 plyss 26129 dgrlem 26159 elqaa 26255 aannenlem2 26262 reeff1olem 26381 rlimcnp 26900 ftalem3 27010 2sqreultblem 27384 2sqreunnlem1 27385 2sqreunnltblem 27387 pntlem3 27545 madess 27819 addsuniflem 27942 mulsuniflem 28086 tgisline 28603 axcontlem2 28941 frgrwopreg1 30293 frgrwopreg2 30294 shless 31334 xlt2addrd 32737 ssnnssfz 32765 xreceu 32897 archirngz 33153 archiabllem1b 33156 1arithidom 33497 dfufd2lem 33509 locfinreflem 33848 crefss 33857 esumpcvgval 34086 sigaclci 34140 eulerpartlemgvv 34384 eulerpartlemgh 34386 signsply0 34559 iccllysconn 35282 satfvsucsuc 35397 fgmin 36403 knoppndvlem18 36562 poimirlem26 37685 poimirlem30 37689 volsupnfl 37704 cover2 37754 filbcmb 37779 istotbnd3 37810 sstotbnd 37814 heibor1lem 37848 isdrngo2 37997 isdrngo3 37998 qsss1 38322 islsati 39032 paddss1 39855 paddss2 39856 hdmap14lem2a 41905 prjspreln0 42641 pellfundre 42913 pellfundge 42914 pellfundglb 42917 hbtlem3 43159 hbtlem5 43160 itgoss 43195 radcnvrat 44346 uzubico 45605 uzubico2 45607 climleltrp 45713 fourierdlem20 46164 smflimlem2 46809 iccelpart 47463 fmtnofac2 47599 grtriprop 47971 ssnn0ssfz 48379 pgrpgt2nabl 48396 eenglngeehlnmlem1 48768 |
| Copyright terms: Public domain | W3C validator |