Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssrexv | Structured version Visualization version GIF version |
Description: Existential quantification restricted to a subclass. (Contributed by NM, 11-Jan-2007.) |
Ref | Expression |
---|---|
ssrexv | ⊢ (𝐴 ⊆ 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐵 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3910 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
2 | 1 | anim1d 610 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ∧ 𝜑) → (𝑥 ∈ 𝐵 ∧ 𝜑))) |
3 | 2 | reximdv2 3198 | 1 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐵 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ∃wrex 3064 ⊆ wss 3883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rex 3069 df-v 3424 df-in 3890 df-ss 3900 |
This theorem is referenced by: ss2rexv 3986 ssn0rex 4286 iunss1 4935 onfr 6290 moriotass 7245 frxp 7938 frfi 8989 fisupcl 9158 supgtoreq 9159 brwdom3 9271 unwdomg 9273 frmin 9438 tcrank 9573 hsmexlem2 10114 pwfseqlem3 10347 grur1 10507 suplem1pr 10739 fimaxre2 11850 fiminre2 11853 suprfinzcl 12365 lbzbi 12605 suprzub 12608 uzsupss 12609 zmin 12613 ssnn0fi 13633 elss2prb 14129 scshwfzeqfzo 14467 rexico 14993 rlim3 15135 rlimclim 15183 caurcvgr 15313 alzdvds 15957 bitsfzolem 16069 pclem 16467 0ram2 16650 0ramcl 16652 symgextfo 18945 lsmless1x 19164 lsmless2x 19165 dprdss 19547 ablfac2 19607 subrgdvds 19953 ssrest 22235 locfincf 22590 fbun 22899 fgss 22932 isucn2 23339 metust 23620 psmetutop 23629 lebnumlem3 24032 lebnum 24033 cfil3i 24338 cfilss 24339 fgcfil 24340 iscau4 24348 ivthle 24525 ivthle2 24526 lhop1lem 25082 lhop2 25084 ply1divex 25206 plyss 25265 dgrlem 25295 elqaa 25387 aannenlem2 25394 reeff1olem 25510 rlimcnp 26020 ftalem3 26129 2sqreultblem 26501 2sqreunnlem1 26502 2sqreunnltblem 26504 pntlem3 26662 tgisline 26892 axcontlem2 27236 frgrwopreg1 28583 frgrwopreg2 28584 shless 29622 xlt2addrd 30983 ssnnssfz 31010 xreceu 31098 archirngz 31345 archiabllem1b 31348 locfinreflem 31692 crefss 31701 esumpcvgval 31946 sigaclci 32000 eulerpartlemgvv 32243 eulerpartlemgh 32245 signsply0 32430 iccllysconn 33112 satfvsucsuc 33227 madess 33986 fgmin 34486 knoppndvlem18 34636 poimirlem26 35730 poimirlem30 35734 volsupnfl 35749 cover2 35799 filbcmb 35825 istotbnd3 35856 sstotbnd 35860 heibor1lem 35894 isdrngo2 36043 isdrngo3 36044 qsss1 36350 islsati 36935 paddss1 37758 paddss2 37759 hdmap14lem2a 39808 prjspreln0 40369 pellfundre 40619 pellfundge 40620 pellfundglb 40623 hbtlem3 40868 hbtlem5 40869 itgoss 40904 radcnvrat 41821 uzubico 42996 uzubico2 42998 climleltrp 43107 fourierdlem20 43558 smflimlem2 44194 iccelpart 44773 fmtnofac2 44909 ssnn0ssfz 45573 pgrpgt2nabl 45590 eenglngeehlnmlem1 45971 |
Copyright terms: Public domain | W3C validator |