Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssrexv | Structured version Visualization version GIF version |
Description: Existential quantification restricted to a subclass. (Contributed by NM, 11-Jan-2007.) |
Ref | Expression |
---|---|
ssrexv | ⊢ (𝐴 ⊆ 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐵 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3893 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
2 | 1 | anim1d 614 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ∧ 𝜑) → (𝑥 ∈ 𝐵 ∧ 𝜑))) |
3 | 2 | reximdv2 3190 | 1 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐵 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2110 ∃wrex 3062 ⊆ wss 3866 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1546 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-rex 3067 df-v 3410 df-in 3873 df-ss 3883 |
This theorem is referenced by: ss2rexv 3970 ssn0rex 4270 iunss1 4918 onfr 6252 moriotass 7203 frxp 7893 frfi 8916 fisupcl 9085 supgtoreq 9086 brwdom3 9198 unwdomg 9200 frmin 9365 tcrank 9500 hsmexlem2 10041 pwfseqlem3 10274 grur1 10434 suplem1pr 10666 fimaxre2 11777 fiminre2 11780 suprfinzcl 12292 lbzbi 12532 suprzub 12535 uzsupss 12536 zmin 12540 ssnn0fi 13558 elss2prb 14053 scshwfzeqfzo 14391 rexico 14917 rlim3 15059 rlimclim 15107 caurcvgr 15237 alzdvds 15881 bitsfzolem 15993 pclem 16391 0ram2 16574 0ramcl 16576 symgextfo 18814 lsmless1x 19033 lsmless2x 19034 dprdss 19416 ablfac2 19476 subrgdvds 19814 ssrest 22073 locfincf 22428 fbun 22737 fgss 22770 isucn2 23176 metust 23456 psmetutop 23465 lebnumlem3 23860 lebnum 23861 cfil3i 24166 cfilss 24167 fgcfil 24168 iscau4 24176 ivthle 24353 ivthle2 24354 lhop1lem 24910 lhop2 24912 ply1divex 25034 plyss 25093 dgrlem 25123 elqaa 25215 aannenlem2 25222 reeff1olem 25338 rlimcnp 25848 ftalem3 25957 2sqreultblem 26329 2sqreunnlem1 26330 2sqreunnltblem 26332 pntlem3 26490 tgisline 26718 axcontlem2 27056 frgrwopreg1 28401 frgrwopreg2 28402 shless 29440 xlt2addrd 30801 ssnnssfz 30828 xreceu 30916 archirngz 31162 archiabllem1b 31165 locfinreflem 31504 crefss 31513 esumpcvgval 31758 sigaclci 31812 eulerpartlemgvv 32055 eulerpartlemgh 32057 signsply0 32242 iccllysconn 32925 satfvsucsuc 33040 madess 33796 fgmin 34296 knoppndvlem18 34446 poimirlem26 35540 poimirlem30 35544 volsupnfl 35559 cover2 35609 filbcmb 35635 istotbnd3 35666 sstotbnd 35670 heibor1lem 35704 isdrngo2 35853 isdrngo3 35854 qsss1 36160 islsati 36745 paddss1 37568 paddss2 37569 hdmap14lem2a 39618 prjspreln0 40156 pellfundre 40406 pellfundge 40407 pellfundglb 40410 hbtlem3 40655 hbtlem5 40656 itgoss 40691 radcnvrat 41605 uzubico 42781 uzubico2 42783 climleltrp 42892 fourierdlem20 43343 smflimlem2 43979 iccelpart 44558 fmtnofac2 44694 ssnn0ssfz 45358 pgrpgt2nabl 45375 eenglngeehlnmlem1 45756 |
Copyright terms: Public domain | W3C validator |