| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssrexv | Structured version Visualization version GIF version | ||
| Description: Existential quantification restricted to a subclass. (Contributed by NM, 11-Jan-2007.) Avoid axioms. (Revised by GG, 19-May-2025.) |
| Ref | Expression |
|---|---|
| ssrexv | ⊢ (𝐴 ⊆ 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐵 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ss 3915 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 2 | pm3.45 622 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) → ((𝑥 ∈ 𝐴 ∧ 𝜑) → (𝑥 ∈ 𝐵 ∧ 𝜑))) | |
| 3 | 2 | aleximi 1833 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) → (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) → ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜑))) |
| 4 | df-rex 3058 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 5 | df-rex 3058 | . . 3 ⊢ (∃𝑥 ∈ 𝐵 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜑)) | |
| 6 | 3, 4, 5 | 3imtr4g 296 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) → (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐵 𝜑)) |
| 7 | 1, 6 | sylbi 217 | 1 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐵 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1539 ∃wex 1780 ∈ wcel 2113 ∃wrex 3057 ⊆ wss 3898 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-rex 3058 df-ss 3915 |
| This theorem is referenced by: ss2rexv 4002 ssn0rex 4307 iunss1 4956 onfr 6350 moriotass 7341 frxp 8062 frfi 9176 fisupcl 9361 supgtoreq 9362 brwdom3 9475 unwdomg 9477 frmin 9649 tcrank 9784 hsmexlem2 10325 pwfseqlem3 10558 grur1 10718 suplem1pr 10950 fimaxre2 12074 fiminre2 12077 suprfinzcl 12593 lbzbi 12836 suprzub 12839 uzsupss 12840 zmin 12844 ssnn0fi 13894 elss2prb 14397 scshwfzeqfzo 14735 rexico 15263 rlim3 15407 rlimclim 15455 caurcvgr 15583 alzdvds 16233 bitsfzolem 16347 pclem 16752 0ram2 16935 0ramcl 16937 symgextfo 19336 lsmless1x 19558 lsmless2x 19559 dprdss 19945 ablfac2 20005 subrgdvds 20503 ssrest 23092 locfincf 23447 fbun 23756 fgss 23789 isucn2 24194 metust 24474 psmetutop 24483 lebnumlem3 24890 lebnum 24891 cfil3i 25197 cfilss 25198 fgcfil 25199 iscau4 25207 ivthle 25385 ivthle2 25386 lhop1lem 25946 lhop2 25948 ply1divex 26070 plyss 26132 dgrlem 26162 elqaa 26258 aannenlem2 26265 reeff1olem 26384 rlimcnp 26903 ftalem3 27013 2sqreultblem 27387 2sqreunnlem1 27388 2sqreunnltblem 27390 pntlem3 27548 madess 27822 addsuniflem 27945 mulsuniflem 28089 tgisline 28606 axcontlem2 28945 frgrwopreg1 30300 frgrwopreg2 30301 shless 31341 xlt2addrd 32746 ssnnssfz 32774 xreceu 32909 archirngz 33165 archiabllem1b 33168 1arithidom 33509 dfufd2lem 33521 locfinreflem 33874 crefss 33883 esumpcvgval 34112 sigaclci 34166 eulerpartlemgvv 34410 eulerpartlemgh 34412 signsply0 34585 iccllysconn 35315 satfvsucsuc 35430 fgmin 36435 knoppndvlem18 36594 poimirlem26 37706 poimirlem30 37710 volsupnfl 37725 cover2 37775 filbcmb 37800 istotbnd3 37831 sstotbnd 37835 heibor1lem 37869 isdrngo2 38018 isdrngo3 38019 qsss1 38347 islsati 39113 paddss1 39936 paddss2 39937 hdmap14lem2a 41986 prjspreln0 42727 pellfundre 42998 pellfundge 42999 pellfundglb 43002 hbtlem3 43244 hbtlem5 43245 itgoss 43280 radcnvrat 44431 uzubico 45690 uzubico2 45692 climleltrp 45798 fourierdlem20 46249 smflimlem2 46894 iccelpart 47557 fmtnofac2 47693 grtriprop 48065 ssnn0ssfz 48473 pgrpgt2nabl 48490 eenglngeehlnmlem1 48862 |
| Copyright terms: Public domain | W3C validator |