|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > ssrexv | Structured version Visualization version GIF version | ||
| Description: Existential quantification restricted to a subclass. (Contributed by NM, 11-Jan-2007.) Avoid axioms. (Revised by GG, 19-May-2025.) | 
| Ref | Expression | 
|---|---|
| ssrexv | ⊢ (𝐴 ⊆ 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐵 𝜑)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-ss 3967 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 2 | pm3.45 622 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) → ((𝑥 ∈ 𝐴 ∧ 𝜑) → (𝑥 ∈ 𝐵 ∧ 𝜑))) | |
| 3 | 2 | aleximi 1831 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) → (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) → ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜑))) | 
| 4 | df-rex 3070 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 5 | df-rex 3070 | . . 3 ⊢ (∃𝑥 ∈ 𝐵 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜑)) | |
| 6 | 3, 4, 5 | 3imtr4g 296 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) → (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐵 𝜑)) | 
| 7 | 1, 6 | sylbi 217 | 1 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐵 𝜑)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1537 ∃wex 1778 ∈ wcel 2107 ∃wrex 3069 ⊆ wss 3950 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-rex 3070 df-ss 3967 | 
| This theorem is referenced by: ss2rexv 4054 ssn0rex 4357 iunss1 5005 onfr 6422 moriotass 7421 frxp 8152 frfi 9322 fisupcl 9510 supgtoreq 9511 brwdom3 9623 unwdomg 9625 frmin 9790 tcrank 9925 hsmexlem2 10468 pwfseqlem3 10701 grur1 10861 suplem1pr 11093 fimaxre2 12214 fiminre2 12217 suprfinzcl 12734 lbzbi 12979 suprzub 12982 uzsupss 12983 zmin 12987 ssnn0fi 14027 elss2prb 14528 scshwfzeqfzo 14866 rexico 15393 rlim3 15535 rlimclim 15583 caurcvgr 15711 alzdvds 16358 bitsfzolem 16472 pclem 16877 0ram2 17060 0ramcl 17062 symgextfo 19441 lsmless1x 19663 lsmless2x 19664 dprdss 20050 ablfac2 20110 subrgdvds 20587 ssrest 23185 locfincf 23540 fbun 23849 fgss 23882 isucn2 24289 metust 24572 psmetutop 24581 lebnumlem3 24996 lebnum 24997 cfil3i 25304 cfilss 25305 fgcfil 25306 iscau4 25314 ivthle 25492 ivthle2 25493 lhop1lem 26053 lhop2 26055 ply1divex 26177 plyss 26239 dgrlem 26269 elqaa 26365 aannenlem2 26372 reeff1olem 26491 rlimcnp 27009 ftalem3 27119 2sqreultblem 27493 2sqreunnlem1 27494 2sqreunnltblem 27496 pntlem3 27654 madess 27916 addsuniflem 28035 mulsuniflem 28176 tgisline 28636 axcontlem2 28981 frgrwopreg1 30338 frgrwopreg2 30339 shless 31379 xlt2addrd 32763 ssnnssfz 32790 xreceu 32905 archirngz 33197 archiabllem1b 33200 1arithidom 33566 dfufd2lem 33578 locfinreflem 33840 crefss 33849 esumpcvgval 34080 sigaclci 34134 eulerpartlemgvv 34379 eulerpartlemgh 34381 signsply0 34567 iccllysconn 35256 satfvsucsuc 35371 fgmin 36372 knoppndvlem18 36531 poimirlem26 37654 poimirlem30 37658 volsupnfl 37673 cover2 37723 filbcmb 37748 istotbnd3 37779 sstotbnd 37783 heibor1lem 37817 isdrngo2 37966 isdrngo3 37967 qsss1 38291 islsati 38996 paddss1 39820 paddss2 39821 hdmap14lem2a 41870 prjspreln0 42624 pellfundre 42897 pellfundge 42898 pellfundglb 42901 hbtlem3 43144 hbtlem5 43145 itgoss 43180 radcnvrat 44338 uzubico 45586 uzubico2 45588 climleltrp 45696 fourierdlem20 46147 smflimlem2 46792 iccelpart 47425 fmtnofac2 47561 grtriprop 47913 ssnn0ssfz 48270 pgrpgt2nabl 48287 eenglngeehlnmlem1 48663 | 
| Copyright terms: Public domain | W3C validator |