| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssrexv | Structured version Visualization version GIF version | ||
| Description: Existential quantification restricted to a subclass. (Contributed by NM, 11-Jan-2007.) Avoid axioms. (Revised by GG, 19-May-2025.) |
| Ref | Expression |
|---|---|
| ssrexv | ⊢ (𝐴 ⊆ 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐵 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ss 3922 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 2 | pm3.45 622 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) → ((𝑥 ∈ 𝐴 ∧ 𝜑) → (𝑥 ∈ 𝐵 ∧ 𝜑))) | |
| 3 | 2 | aleximi 1832 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) → (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) → ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜑))) |
| 4 | df-rex 3054 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 5 | df-rex 3054 | . . 3 ⊢ (∃𝑥 ∈ 𝐵 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜑)) | |
| 6 | 3, 4, 5 | 3imtr4g 296 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) → (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐵 𝜑)) |
| 7 | 1, 6 | sylbi 217 | 1 ⊢ (𝐴 ⊆ 𝐵 → (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐵 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 ∃wex 1779 ∈ wcel 2109 ∃wrex 3053 ⊆ wss 3905 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-rex 3054 df-ss 3922 |
| This theorem is referenced by: ss2rexv 4009 ssn0rex 4311 iunss1 4959 onfr 6350 moriotass 7342 frxp 8066 frfi 9190 fisupcl 9379 supgtoreq 9380 brwdom3 9493 unwdomg 9495 frmin 9664 tcrank 9799 hsmexlem2 10340 pwfseqlem3 10573 grur1 10733 suplem1pr 10965 fimaxre2 12088 fiminre2 12091 suprfinzcl 12608 lbzbi 12855 suprzub 12858 uzsupss 12859 zmin 12863 ssnn0fi 13910 elss2prb 14413 scshwfzeqfzo 14751 rexico 15279 rlim3 15423 rlimclim 15471 caurcvgr 15599 alzdvds 16249 bitsfzolem 16363 pclem 16768 0ram2 16951 0ramcl 16953 symgextfo 19319 lsmless1x 19541 lsmless2x 19542 dprdss 19928 ablfac2 19988 subrgdvds 20489 ssrest 23079 locfincf 23434 fbun 23743 fgss 23776 isucn2 24182 metust 24462 psmetutop 24471 lebnumlem3 24878 lebnum 24879 cfil3i 25185 cfilss 25186 fgcfil 25187 iscau4 25195 ivthle 25373 ivthle2 25374 lhop1lem 25934 lhop2 25936 ply1divex 26058 plyss 26120 dgrlem 26150 elqaa 26246 aannenlem2 26253 reeff1olem 26372 rlimcnp 26891 ftalem3 27001 2sqreultblem 27375 2sqreunnlem1 27376 2sqreunnltblem 27378 pntlem3 27536 madess 27808 addsuniflem 27931 mulsuniflem 28075 tgisline 28590 axcontlem2 28928 frgrwopreg1 30280 frgrwopreg2 30281 shless 31321 xlt2addrd 32715 ssnnssfz 32743 xreceu 32875 archirngz 33141 archiabllem1b 33144 1arithidom 33484 dfufd2lem 33496 locfinreflem 33806 crefss 33815 esumpcvgval 34044 sigaclci 34098 eulerpartlemgvv 34343 eulerpartlemgh 34345 signsply0 34518 iccllysconn 35222 satfvsucsuc 35337 fgmin 36343 knoppndvlem18 36502 poimirlem26 37625 poimirlem30 37629 volsupnfl 37644 cover2 37694 filbcmb 37719 istotbnd3 37750 sstotbnd 37754 heibor1lem 37788 isdrngo2 37937 isdrngo3 37938 qsss1 38262 islsati 38972 paddss1 39796 paddss2 39797 hdmap14lem2a 41846 prjspreln0 42582 pellfundre 42854 pellfundge 42855 pellfundglb 42858 hbtlem3 43100 hbtlem5 43101 itgoss 43136 radcnvrat 44287 uzubico 45548 uzubico2 45550 climleltrp 45658 fourierdlem20 46109 smflimlem2 46754 iccelpart 47418 fmtnofac2 47554 grtriprop 47926 ssnn0ssfz 48334 pgrpgt2nabl 48351 eenglngeehlnmlem1 48723 |
| Copyright terms: Public domain | W3C validator |