MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralss Structured version   Visualization version   GIF version

Theorem ralss 4058
Description: Restricted universal quantification on a subset in terms of superset. (Contributed by Stefan O'Rear, 3-Apr-2015.) Avoid axioms. (Revised by SN, 14-Oct-2025.)
Assertion
Ref Expression
ralss (𝐴𝐵 → (∀𝑥𝐴 𝜑 ↔ ∀𝑥𝐵 (𝑥𝐴𝜑)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ralss
StepHypRef Expression
1 df-ss 3968 . . . 4 (𝐴𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
2 id 22 . . . . . . . 8 ((𝑥𝐴𝑥𝐵) → (𝑥𝐴𝑥𝐵))
32pm4.71rd 562 . . . . . . 7 ((𝑥𝐴𝑥𝐵) → (𝑥𝐴 ↔ (𝑥𝐵𝑥𝐴)))
43imbi1d 341 . . . . . 6 ((𝑥𝐴𝑥𝐵) → ((𝑥𝐴𝜑) ↔ ((𝑥𝐵𝑥𝐴) → 𝜑)))
5 impexp 450 . . . . . 6 (((𝑥𝐵𝑥𝐴) → 𝜑) ↔ (𝑥𝐵 → (𝑥𝐴𝜑)))
64, 5bitrdi 287 . . . . 5 ((𝑥𝐴𝑥𝐵) → ((𝑥𝐴𝜑) ↔ (𝑥𝐵 → (𝑥𝐴𝜑))))
76alimi 1811 . . . 4 (∀𝑥(𝑥𝐴𝑥𝐵) → ∀𝑥((𝑥𝐴𝜑) ↔ (𝑥𝐵 → (𝑥𝐴𝜑))))
81, 7sylbi 217 . . 3 (𝐴𝐵 → ∀𝑥((𝑥𝐴𝜑) ↔ (𝑥𝐵 → (𝑥𝐴𝜑))))
9 albi 1818 . . 3 (∀𝑥((𝑥𝐴𝜑) ↔ (𝑥𝐵 → (𝑥𝐴𝜑))) → (∀𝑥(𝑥𝐴𝜑) ↔ ∀𝑥(𝑥𝐵 → (𝑥𝐴𝜑))))
108, 9syl 17 . 2 (𝐴𝐵 → (∀𝑥(𝑥𝐴𝜑) ↔ ∀𝑥(𝑥𝐵 → (𝑥𝐴𝜑))))
11 df-ral 3062 . 2 (∀𝑥𝐴 𝜑 ↔ ∀𝑥(𝑥𝐴𝜑))
12 df-ral 3062 . 2 (∀𝑥𝐵 (𝑥𝐴𝜑) ↔ ∀𝑥(𝑥𝐵 → (𝑥𝐴𝜑)))
1310, 11, 123bitr4g 314 1 (𝐴𝐵 → (∀𝑥𝐴 𝜑 ↔ ∀𝑥𝐵 (𝑥𝐴𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538  wcel 2108  wral 3061  wss 3951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809
This theorem depends on definitions:  df-bi 207  df-an 396  df-ral 3062  df-ss 3968
This theorem is referenced by:  acsfn  17702  acsfn1  17704  acsfn2  17706  acsfn1p  20800  mdetunilem9  22626  ntrneik3  44109  ntrneix3  44110  ntrneik13  44111  ntrneix13  44112  ralabso  44985
  Copyright terms: Public domain W3C validator