MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralss Structured version   Visualization version   GIF version

Theorem ralss 4053
Description: Restricted universal quantification on a subset in terms of superset. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Assertion
Ref Expression
ralss (𝐴𝐵 → (∀𝑥𝐴 𝜑 ↔ ∀𝑥𝐵 (𝑥𝐴𝜑)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ralss
StepHypRef Expression
1 ssel 3974 . . . . 5 (𝐴𝐵 → (𝑥𝐴𝑥𝐵))
21pm4.71rd 561 . . . 4 (𝐴𝐵 → (𝑥𝐴 ↔ (𝑥𝐵𝑥𝐴)))
32imbi1d 340 . . 3 (𝐴𝐵 → ((𝑥𝐴𝜑) ↔ ((𝑥𝐵𝑥𝐴) → 𝜑)))
4 impexp 449 . . 3 (((𝑥𝐵𝑥𝐴) → 𝜑) ↔ (𝑥𝐵 → (𝑥𝐴𝜑)))
53, 4bitrdi 286 . 2 (𝐴𝐵 → ((𝑥𝐴𝜑) ↔ (𝑥𝐵 → (𝑥𝐴𝜑))))
65ralbidv2 3171 1 (𝐴𝐵 → (∀𝑥𝐴 𝜑 ↔ ∀𝑥𝐵 (𝑥𝐴𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wcel 2104  wral 3059  wss 3947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701
This theorem depends on definitions:  df-bi 206  df-an 395  df-tru 1542  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-ral 3060  df-v 3474  df-in 3954  df-ss 3964
This theorem is referenced by:  acsfn  17607  acsfn1  17609  acsfn2  17611  acsfn1p  20558  mdetunilem9  22342  ntrneik3  43149  ntrneix3  43150  ntrneik13  43151  ntrneix13  43152
  Copyright terms: Public domain W3C validator