MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sssseq Structured version   Visualization version   GIF version

Theorem sssseq 3939
Description: If a class is a subclass of another class, then the classes are equal if and only if the other class is a subclass of the first class. (Contributed by AV, 23-Dec-2020.)
Assertion
Ref Expression
sssseq (𝐵𝐴 → (𝐴𝐵𝐴 = 𝐵))

Proof of Theorem sssseq
StepHypRef Expression
1 eqss 3936 . 2 (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴))
21rbaibr 538 1 (𝐵𝐴 → (𝐴𝐵𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wss 3887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-in 3894  df-ss 3904
This theorem is referenced by:  vdiscusgrb  27897
  Copyright terms: Public domain W3C validator