MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sssseq Structured version   Visualization version   GIF version

Theorem sssseq 4027
Description: If a class is a subclass of another class, then the classes are equal if and only if the other class is a subclass of the first class. (Contributed by AV, 23-Dec-2020.)
Assertion
Ref Expression
sssseq (𝐵𝐴 → (𝐴𝐵𝐴 = 𝐵))

Proof of Theorem sssseq
StepHypRef Expression
1 eqss 4024 . 2 (𝐴 = 𝐵 ↔ (𝐴𝐵𝐵𝐴))
21rbaibr 537 1 (𝐵𝐴 → (𝐴𝐵𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wss 3976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-cleq 2732  df-ss 3993
This theorem is referenced by:  isdomn6  20736  vdiscusgrb  29566
  Copyright terms: Public domain W3C validator