![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vdiscusgrb | Structured version Visualization version GIF version |
Description: A finite simple graph with n vertices is complete iff every vertex has degree π β 1. (Contributed by Alexander van der Vekens, 14-Jul-2018.) (Revised by AV, 22-Dec-2020.) |
Ref | Expression |
---|---|
hashnbusgrvd.v | β’ π = (VtxβπΊ) |
Ref | Expression |
---|---|
vdiscusgrb | β’ (πΊ β FinUSGraph β (πΊ β ComplUSGraph β βπ£ β π ((VtxDegβπΊ)βπ£) = ((β―βπ) β 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fusgrusgr 29048 | . . 3 β’ (πΊ β FinUSGraph β πΊ β USGraph) | |
2 | hashnbusgrvd.v | . . . . . 6 β’ π = (VtxβπΊ) | |
3 | 2 | cusgruvtxb 29148 | . . . . 5 β’ (πΊ β USGraph β (πΊ β ComplUSGraph β (UnivVtxβπΊ) = π)) |
4 | 2 | uvtxssvtx 29116 | . . . . . 6 β’ (UnivVtxβπΊ) β π |
5 | eqcom 2731 | . . . . . . 7 β’ ((UnivVtxβπΊ) = π β π = (UnivVtxβπΊ)) | |
6 | sssseq 3992 | . . . . . . 7 β’ ((UnivVtxβπΊ) β π β (π β (UnivVtxβπΊ) β π = (UnivVtxβπΊ))) | |
7 | 5, 6 | bitr4id 290 | . . . . . 6 β’ ((UnivVtxβπΊ) β π β ((UnivVtxβπΊ) = π β π β (UnivVtxβπΊ))) |
8 | 4, 7 | mp1i 13 | . . . . 5 β’ (πΊ β USGraph β ((UnivVtxβπΊ) = π β π β (UnivVtxβπΊ))) |
9 | 3, 8 | bitrd 279 | . . . 4 β’ (πΊ β USGraph β (πΊ β ComplUSGraph β π β (UnivVtxβπΊ))) |
10 | dfss3 3962 | . . . 4 β’ (π β (UnivVtxβπΊ) β βπ£ β π π£ β (UnivVtxβπΊ)) | |
11 | 9, 10 | bitrdi 287 | . . 3 β’ (πΊ β USGraph β (πΊ β ComplUSGraph β βπ£ β π π£ β (UnivVtxβπΊ))) |
12 | 1, 11 | syl 17 | . 2 β’ (πΊ β FinUSGraph β (πΊ β ComplUSGraph β βπ£ β π π£ β (UnivVtxβπΊ))) |
13 | 2 | usgruvtxvdb 29255 | . . 3 β’ ((πΊ β FinUSGraph β§ π£ β π) β (π£ β (UnivVtxβπΊ) β ((VtxDegβπΊ)βπ£) = ((β―βπ) β 1))) |
14 | 13 | ralbidva 3167 | . 2 β’ (πΊ β FinUSGraph β (βπ£ β π π£ β (UnivVtxβπΊ) β βπ£ β π ((VtxDegβπΊ)βπ£) = ((β―βπ) β 1))) |
15 | 12, 14 | bitrd 279 | 1 β’ (πΊ β FinUSGraph β (πΊ β ComplUSGraph β βπ£ β π ((VtxDegβπΊ)βπ£) = ((β―βπ) β 1))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 = wceq 1533 β wcel 2098 βwral 3053 β wss 3940 βcfv 6533 (class class class)co 7401 1c1 11107 β cmin 11441 β―chash 14287 Vtxcvtx 28725 USGraphcusgr 28878 FinUSGraphcfusgr 29042 UnivVtxcuvtx 29111 ComplUSGraphccusgr 29136 VtxDegcvtxdg 29191 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-1st 7968 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-2o 8462 df-oadd 8465 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-dju 9892 df-card 9930 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-nn 12210 df-2 12272 df-n0 12470 df-xnn0 12542 df-z 12556 df-uz 12820 df-xadd 13090 df-fz 13482 df-hash 14288 df-edg 28777 df-uhgr 28787 df-ushgr 28788 df-upgr 28811 df-umgr 28812 df-uspgr 28879 df-usgr 28880 df-fusgr 29043 df-nbgr 29059 df-uvtx 29112 df-cplgr 29137 df-cusgr 29138 df-vtxdg 29192 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |