![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqrd | Structured version Visualization version GIF version |
Description: Deduce equality of classes from equivalence of membership. (Contributed by Thierry Arnoux, 21-Mar-2017.) (Proof shortened by BJ, 1-Dec-2021.) |
Ref | Expression |
---|---|
eqrd.0 | ⊢ Ⅎ𝑥𝜑 |
eqrd.1 | ⊢ Ⅎ𝑥𝐴 |
eqrd.2 | ⊢ Ⅎ𝑥𝐵 |
eqrd.3 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
Ref | Expression |
---|---|
eqrd | ⊢ (𝜑 → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqrd.0 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | eqrd.3 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
3 | 1, 2 | alrimi 2207 | . 2 ⊢ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
4 | eqrd.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
5 | eqrd.2 | . . 3 ⊢ Ⅎ𝑥𝐵 | |
6 | 4, 5 | cleqf 2935 | . 2 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
7 | 3, 6 | sylibr 233 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1540 = wceq 1542 Ⅎwnf 1786 ∈ wcel 2107 Ⅎwnfc 2884 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-11 2155 ax-12 2172 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-ex 1783 df-nf 1787 df-cleq 2725 df-clel 2811 df-nfc 2886 |
This theorem is referenced by: eqri 4003 sniota 6535 dissnlocfin 23033 imasnopn 23194 imasncld 23195 imasncls 23196 blval2 24071 eqrrabd 31741 fimarab 31868 ofpreima 31890 zarcls 32854 ordtconnlem1 32904 qqhval2 32962 reprdifc 33639 topdifinfindis 36227 icorempo 36232 isbasisrelowllem1 36236 isbasisrelowllem2 36237 sticksstones11 40972 areaquad 41965 rfcnpre1 43703 rfcnpre2 43715 preimagelt 45415 preimalegt 45416 |
Copyright terms: Public domain | W3C validator |