| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqrd | Structured version Visualization version GIF version | ||
| Description: Deduce equality of classes from equivalence of membership. (Contributed by Thierry Arnoux, 21-Mar-2017.) (Proof shortened by BJ, 1-Dec-2021.) |
| Ref | Expression |
|---|---|
| eqrd.0 | ⊢ Ⅎ𝑥𝜑 |
| eqrd.1 | ⊢ Ⅎ𝑥𝐴 |
| eqrd.2 | ⊢ Ⅎ𝑥𝐵 |
| eqrd.3 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
| Ref | Expression |
|---|---|
| eqrd | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqrd.0 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | eqrd.3 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
| 3 | 1, 2 | alrimi 2216 | . 2 ⊢ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
| 4 | eqrd.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 5 | eqrd.2 | . . 3 ⊢ Ⅎ𝑥𝐵 | |
| 6 | 4, 5 | cleqf 2923 | . 2 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
| 7 | 3, 6 | sylibr 234 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1539 = wceq 1541 Ⅎwnf 1784 ∈ wcel 2111 Ⅎwnfc 2879 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-cleq 2723 df-clel 2806 df-nfc 2881 |
| This theorem is referenced by: eqri 3950 eqrrabd 4033 sniota 6472 fimarab 6896 dissnlocfin 23444 imasnopn 23605 imasncld 23606 imasncls 23607 blval2 24477 ofpreima 32647 algextdeglem6 33735 constrfin 33759 zarcls 33887 ordtconnlem1 33937 qqhval2 33995 reprdifc 34640 topdifinfindis 37388 icorempo 37393 isbasisrelowllem1 37397 isbasisrelowllem2 37398 sticksstones11 42197 areaquad 43257 rfcnpre1 45064 rfcnpre2 45076 preimagelt 46745 preimalegt 46746 |
| Copyright terms: Public domain | W3C validator |