Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqrd | Structured version Visualization version GIF version |
Description: Deduce equality of classes from equivalence of membership. (Contributed by Thierry Arnoux, 21-Mar-2017.) (Proof shortened by BJ, 1-Dec-2021.) |
Ref | Expression |
---|---|
eqrd.0 | ⊢ Ⅎ𝑥𝜑 |
eqrd.1 | ⊢ Ⅎ𝑥𝐴 |
eqrd.2 | ⊢ Ⅎ𝑥𝐵 |
eqrd.3 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
Ref | Expression |
---|---|
eqrd | ⊢ (𝜑 → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqrd.0 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | eqrd.3 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
3 | 1, 2 | alrimi 2204 | . 2 ⊢ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
4 | eqrd.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
5 | eqrd.2 | . . 3 ⊢ Ⅎ𝑥𝐵 | |
6 | 4, 5 | cleqf 2936 | . 2 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
7 | 3, 6 | sylibr 233 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 = wceq 1539 Ⅎwnf 1783 ∈ wcel 2104 Ⅎwnfc 2885 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-11 2152 ax-12 2169 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-tru 1542 df-ex 1780 df-nf 1784 df-cleq 2728 df-clel 2814 df-nfc 2887 |
This theorem is referenced by: eqri 3946 sniota 6449 dissnlocfin 22729 imasnopn 22890 imasncld 22891 imasncls 22892 blval2 23767 eqrrabd 30898 fimarab 31029 ofpreima 31051 zarcls 31873 ordtconnlem1 31923 qqhval2 31981 reprdifc 32656 topdifinfindis 35565 icorempo 35570 isbasisrelowllem1 35574 isbasisrelowllem2 35575 sticksstones11 40312 areaquad 41243 rfcnpre1 42775 rfcnpre2 42787 preimagelt 44467 preimalegt 44468 |
Copyright terms: Public domain | W3C validator |