| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqrd | Structured version Visualization version GIF version | ||
| Description: Deduce equality of classes from equivalence of membership. (Contributed by Thierry Arnoux, 21-Mar-2017.) (Proof shortened by BJ, 1-Dec-2021.) |
| Ref | Expression |
|---|---|
| eqrd.0 | ⊢ Ⅎ𝑥𝜑 |
| eqrd.1 | ⊢ Ⅎ𝑥𝐴 |
| eqrd.2 | ⊢ Ⅎ𝑥𝐵 |
| eqrd.3 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
| Ref | Expression |
|---|---|
| eqrd | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqrd.0 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | eqrd.3 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
| 3 | 1, 2 | alrimi 2214 | . 2 ⊢ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
| 4 | eqrd.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 5 | eqrd.2 | . . 3 ⊢ Ⅎ𝑥𝐵 | |
| 6 | 4, 5 | cleqf 2920 | . 2 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
| 7 | 3, 6 | sylibr 234 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 Ⅎwnfc 2876 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-cleq 2721 df-clel 2803 df-nfc 2878 |
| This theorem is referenced by: eqri 3956 eqrrabd 4037 sniota 6473 fimarab 6897 dissnlocfin 23414 imasnopn 23575 imasncld 23576 imasncls 23577 blval2 24448 ofpreima 32608 algextdeglem6 33689 constrfin 33713 zarcls 33841 ordtconnlem1 33891 qqhval2 33949 reprdifc 34595 topdifinfindis 37320 icorempo 37325 isbasisrelowllem1 37329 isbasisrelowllem2 37330 sticksstones11 42129 areaquad 43189 rfcnpre1 44997 rfcnpre2 45009 preimagelt 46680 preimalegt 46681 |
| Copyright terms: Public domain | W3C validator |