| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqrd | Structured version Visualization version GIF version | ||
| Description: Deduce equality of classes from equivalence of membership. (Contributed by Thierry Arnoux, 21-Mar-2017.) (Proof shortened by BJ, 1-Dec-2021.) |
| Ref | Expression |
|---|---|
| eqrd.0 | ⊢ Ⅎ𝑥𝜑 |
| eqrd.1 | ⊢ Ⅎ𝑥𝐴 |
| eqrd.2 | ⊢ Ⅎ𝑥𝐵 |
| eqrd.3 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
| Ref | Expression |
|---|---|
| eqrd | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqrd.0 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | eqrd.3 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
| 3 | 1, 2 | alrimi 2213 | . 2 ⊢ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
| 4 | eqrd.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 5 | eqrd.2 | . . 3 ⊢ Ⅎ𝑥𝐵 | |
| 6 | 4, 5 | cleqf 2927 | . 2 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
| 7 | 3, 6 | sylibr 234 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2108 Ⅎwnfc 2883 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-11 2157 ax-12 2177 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-cleq 2727 df-clel 2809 df-nfc 2885 |
| This theorem is referenced by: eqri 3979 eqrrabd 4061 sniota 6522 fimarab 6953 dissnlocfin 23467 imasnopn 23628 imasncld 23629 imasncls 23630 blval2 24501 ofpreima 32643 algextdeglem6 33756 constrfin 33780 zarcls 33905 ordtconnlem1 33955 qqhval2 34013 reprdifc 34659 topdifinfindis 37364 icorempo 37369 isbasisrelowllem1 37373 isbasisrelowllem2 37374 sticksstones11 42169 areaquad 43240 rfcnpre1 45043 rfcnpre2 45055 preimagelt 46728 preimalegt 46729 |
| Copyright terms: Public domain | W3C validator |