| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqrd | Structured version Visualization version GIF version | ||
| Description: Deduce equality of classes from equivalence of membership. (Contributed by Thierry Arnoux, 21-Mar-2017.) (Proof shortened by BJ, 1-Dec-2021.) |
| Ref | Expression |
|---|---|
| eqrd.0 | ⊢ Ⅎ𝑥𝜑 |
| eqrd.1 | ⊢ Ⅎ𝑥𝐴 |
| eqrd.2 | ⊢ Ⅎ𝑥𝐵 |
| eqrd.3 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
| Ref | Expression |
|---|---|
| eqrd | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqrd.0 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | eqrd.3 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
| 3 | 1, 2 | alrimi 2214 | . 2 ⊢ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
| 4 | eqrd.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 5 | eqrd.2 | . . 3 ⊢ Ⅎ𝑥𝐵 | |
| 6 | 4, 5 | cleqf 2921 | . 2 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
| 7 | 3, 6 | sylibr 234 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 Ⅎwnfc 2877 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-cleq 2722 df-clel 2804 df-nfc 2879 |
| This theorem is referenced by: eqri 3970 eqrrabd 4052 sniota 6505 fimarab 6938 dissnlocfin 23423 imasnopn 23584 imasncld 23585 imasncls 23586 blval2 24457 ofpreima 32596 algextdeglem6 33719 constrfin 33743 zarcls 33871 ordtconnlem1 33921 qqhval2 33979 reprdifc 34625 topdifinfindis 37341 icorempo 37346 isbasisrelowllem1 37350 isbasisrelowllem2 37351 sticksstones11 42151 areaquad 43212 rfcnpre1 45020 rfcnpre2 45032 preimagelt 46704 preimalegt 46705 |
| Copyright terms: Public domain | W3C validator |