![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqrd | Structured version Visualization version GIF version |
Description: Deduce equality of classes from equivalence of membership. (Contributed by Thierry Arnoux, 21-Mar-2017.) (Proof shortened by BJ, 1-Dec-2021.) |
Ref | Expression |
---|---|
eqrd.0 | ⊢ Ⅎ𝑥𝜑 |
eqrd.1 | ⊢ Ⅎ𝑥𝐴 |
eqrd.2 | ⊢ Ⅎ𝑥𝐵 |
eqrd.3 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
Ref | Expression |
---|---|
eqrd | ⊢ (𝜑 → 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqrd.0 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | eqrd.3 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
3 | 1, 2 | alrimi 2214 | . 2 ⊢ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
4 | eqrd.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
5 | eqrd.2 | . . 3 ⊢ Ⅎ𝑥𝐵 | |
6 | 4, 5 | cleqf 2940 | . 2 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
7 | 3, 6 | sylibr 234 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wal 1535 = wceq 1537 Ⅎwnf 1781 ∈ wcel 2108 Ⅎwnfc 2893 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-nf 1782 df-cleq 2732 df-clel 2819 df-nfc 2895 |
This theorem is referenced by: eqri 4029 eqrrabd 4109 sniota 6564 fimarab 6996 dissnlocfin 23558 imasnopn 23719 imasncld 23720 imasncls 23721 blval2 24596 ofpreima 32683 algextdeglem6 33713 constrfin 33736 zarcls 33820 ordtconnlem1 33870 qqhval2 33928 reprdifc 34604 topdifinfindis 37312 icorempo 37317 isbasisrelowllem1 37321 isbasisrelowllem2 37322 sticksstones11 42113 areaquad 43177 rfcnpre1 44919 rfcnpre2 44931 preimagelt 46620 preimalegt 46621 |
Copyright terms: Public domain | W3C validator |