|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > syl313anc | Structured version Visualization version GIF version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) | 
| Ref | Expression | 
|---|---|
| syl3anc.1 | ⊢ (𝜑 → 𝜓) | 
| syl3anc.2 | ⊢ (𝜑 → 𝜒) | 
| syl3anc.3 | ⊢ (𝜑 → 𝜃) | 
| syl3Xanc.4 | ⊢ (𝜑 → 𝜏) | 
| syl23anc.5 | ⊢ (𝜑 → 𝜂) | 
| syl33anc.6 | ⊢ (𝜑 → 𝜁) | 
| syl133anc.7 | ⊢ (𝜑 → 𝜎) | 
| syl313anc.8 | ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏 ∧ (𝜂 ∧ 𝜁 ∧ 𝜎)) → 𝜌) | 
| Ref | Expression | 
|---|---|
| syl313anc | ⊢ (𝜑 → 𝜌) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | syl3anc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | syl3anc.2 | . 2 ⊢ (𝜑 → 𝜒) | |
| 3 | syl3anc.3 | . 2 ⊢ (𝜑 → 𝜃) | |
| 4 | syl3Xanc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
| 5 | syl23anc.5 | . . 3 ⊢ (𝜑 → 𝜂) | |
| 6 | syl33anc.6 | . . 3 ⊢ (𝜑 → 𝜁) | |
| 7 | syl133anc.7 | . . 3 ⊢ (𝜑 → 𝜎) | |
| 8 | 5, 6, 7 | 3jca 1128 | . 2 ⊢ (𝜑 → (𝜂 ∧ 𝜁 ∧ 𝜎)) | 
| 9 | syl313anc.8 | . 2 ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏 ∧ (𝜂 ∧ 𝜁 ∧ 𝜎)) → 𝜌) | |
| 10 | 1, 2, 3, 4, 8, 9 | syl311anc 1385 | 1 ⊢ (𝜑 → 𝜌) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ w3a 1086 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 | 
| This theorem is referenced by: syl323anc 1401 osumcllem6N 39964 cdlemg13 40655 cdlemk7u 40873 cdlemk31 40899 cdlemk27-3 40910 cdlemk19ylem 40933 cdlemk46 40951 | 
| Copyright terms: Public domain | W3C validator |