MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl331anc Structured version   Visualization version   GIF version

Theorem syl331anc 1397
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
Hypotheses
Ref Expression
syl3anc.1 (𝜑𝜓)
syl3anc.2 (𝜑𝜒)
syl3anc.3 (𝜑𝜃)
syl3Xanc.4 (𝜑𝜏)
syl23anc.5 (𝜑𝜂)
syl33anc.6 (𝜑𝜁)
syl133anc.7 (𝜑𝜎)
syl331anc.8 (((𝜓𝜒𝜃) ∧ (𝜏𝜂𝜁) ∧ 𝜎) → 𝜌)
Assertion
Ref Expression
syl331anc (𝜑𝜌)

Proof of Theorem syl331anc
StepHypRef Expression
1 syl3anc.1 . 2 (𝜑𝜓)
2 syl3anc.2 . 2 (𝜑𝜒)
3 syl3anc.3 . 2 (𝜑𝜃)
4 syl3Xanc.4 . . 3 (𝜑𝜏)
5 syl23anc.5 . . 3 (𝜑𝜂)
6 syl33anc.6 . . 3 (𝜑𝜁)
74, 5, 63jca 1128 . 2 (𝜑 → (𝜏𝜂𝜁))
8 syl133anc.7 . 2 (𝜑𝜎)
9 syl331anc.8 . 2 (((𝜓𝜒𝜃) ∧ (𝜏𝜂𝜁) ∧ 𝜎) → 𝜌)
101, 2, 3, 7, 8, 9syl311anc 1386 1 (𝜑𝜌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  syl332anc  1403  syl333anc  1404  qredeu  16587  brbtwn2  28868  3atlem4  39465  3atlem6  39467  llnexchb2  39848  osumcllem9N  39943  cdlemd4  40180  cdleme26fALTN  40341  cdleme26f  40342  cdleme36m  40440  cdlemg17b  40641  cdlemg17h  40647  cdlemk38  40894  cdlemk53b  40935  cdlemkyyN  40941  cdlemk43N  40942
  Copyright terms: Public domain W3C validator