![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl331anc | Structured version Visualization version GIF version |
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
Ref | Expression |
---|---|
syl3anc.1 | ⊢ (𝜑 → 𝜓) |
syl3anc.2 | ⊢ (𝜑 → 𝜒) |
syl3anc.3 | ⊢ (𝜑 → 𝜃) |
syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
syl23anc.5 | ⊢ (𝜑 → 𝜂) |
syl33anc.6 | ⊢ (𝜑 → 𝜁) |
syl133anc.7 | ⊢ (𝜑 → 𝜎) |
syl331anc.8 | ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂 ∧ 𝜁) ∧ 𝜎) → 𝜌) |
Ref | Expression |
---|---|
syl331anc | ⊢ (𝜑 → 𝜌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3anc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | syl3anc.2 | . 2 ⊢ (𝜑 → 𝜒) | |
3 | syl3anc.3 | . 2 ⊢ (𝜑 → 𝜃) | |
4 | syl3Xanc.4 | . . 3 ⊢ (𝜑 → 𝜏) | |
5 | syl23anc.5 | . . 3 ⊢ (𝜑 → 𝜂) | |
6 | syl33anc.6 | . . 3 ⊢ (𝜑 → 𝜁) | |
7 | 4, 5, 6 | 3jca 1128 | . 2 ⊢ (𝜑 → (𝜏 ∧ 𝜂 ∧ 𝜁)) |
8 | syl133anc.7 | . 2 ⊢ (𝜑 → 𝜎) | |
9 | syl331anc.8 | . 2 ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂 ∧ 𝜁) ∧ 𝜎) → 𝜌) | |
10 | 1, 2, 3, 7, 8, 9 | syl311anc 1384 | 1 ⊢ (𝜑 → 𝜌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: syl332anc 1401 syl333anc 1402 qredeu 16705 brbtwn2 28938 3atlem4 39443 3atlem6 39445 llnexchb2 39826 osumcllem9N 39921 cdlemd4 40158 cdleme26fALTN 40319 cdleme26f 40320 cdleme36m 40418 cdlemg17b 40619 cdlemg17h 40625 cdlemk38 40872 cdlemk53b 40913 cdlemkyyN 40919 cdlemk43N 40920 |
Copyright terms: Public domain | W3C validator |