| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl331anc | Structured version Visualization version GIF version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| syl3anc.1 | ⊢ (𝜑 → 𝜓) |
| syl3anc.2 | ⊢ (𝜑 → 𝜒) |
| syl3anc.3 | ⊢ (𝜑 → 𝜃) |
| syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
| syl23anc.5 | ⊢ (𝜑 → 𝜂) |
| syl33anc.6 | ⊢ (𝜑 → 𝜁) |
| syl133anc.7 | ⊢ (𝜑 → 𝜎) |
| syl331anc.8 | ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂 ∧ 𝜁) ∧ 𝜎) → 𝜌) |
| Ref | Expression |
|---|---|
| syl331anc | ⊢ (𝜑 → 𝜌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3anc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | syl3anc.2 | . 2 ⊢ (𝜑 → 𝜒) | |
| 3 | syl3anc.3 | . 2 ⊢ (𝜑 → 𝜃) | |
| 4 | syl3Xanc.4 | . . 3 ⊢ (𝜑 → 𝜏) | |
| 5 | syl23anc.5 | . . 3 ⊢ (𝜑 → 𝜂) | |
| 6 | syl33anc.6 | . . 3 ⊢ (𝜑 → 𝜁) | |
| 7 | 4, 5, 6 | 3jca 1128 | . 2 ⊢ (𝜑 → (𝜏 ∧ 𝜂 ∧ 𝜁)) |
| 8 | syl133anc.7 | . 2 ⊢ (𝜑 → 𝜎) | |
| 9 | syl331anc.8 | . 2 ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂 ∧ 𝜁) ∧ 𝜎) → 𝜌) | |
| 10 | 1, 2, 3, 7, 8, 9 | syl311anc 1386 | 1 ⊢ (𝜑 → 𝜌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: syl332anc 1403 syl333anc 1404 qredeu 16566 brbtwn2 28881 3atlem4 39524 3atlem6 39526 llnexchb2 39907 osumcllem9N 40002 cdlemd4 40239 cdleme26fALTN 40400 cdleme26f 40401 cdleme36m 40499 cdlemg17b 40700 cdlemg17h 40706 cdlemk38 40953 cdlemk53b 40994 cdlemkyyN 41000 cdlemk43N 41001 |
| Copyright terms: Public domain | W3C validator |