Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk46 Structured version   Visualization version   GIF version

Theorem cdlemk46 38156
 Description: Part of proof of Lemma K of [Crawley] p. 118. Line 38 (last line), p. 119. 𝐺, 𝐼 stand for g, h. 𝑋 represents tau. (Contributed by NM, 22-Jul-2013.)
Hypotheses
Ref Expression
cdlemk5.b 𝐵 = (Base‘𝐾)
cdlemk5.l = (le‘𝐾)
cdlemk5.j = (join‘𝐾)
cdlemk5.m = (meet‘𝐾)
cdlemk5.a 𝐴 = (Atoms‘𝐾)
cdlemk5.h 𝐻 = (LHyp‘𝐾)
cdlemk5.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemk5.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemk5.z 𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))
cdlemk5.y 𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))
cdlemk5.x 𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌))
Assertion
Ref Expression
cdlemk46 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵) ∧ (𝐺𝐼) ≠ ( I ↾ 𝐵))) → ((𝐺𝐼) / 𝑔𝑋𝑃) ((𝐺 / 𝑔𝑋𝑃) (𝑅𝐼)))
Distinct variable groups:   ,𝑔   ,𝑔   𝐵,𝑔   𝑃,𝑔   𝑅,𝑔   𝑇,𝑔   𝑔,𝑍   𝑔,𝑏,𝐺,𝑧   ,𝑏,𝑧   ,𝑏   𝑧,𝑔,   ,𝑏,𝑧   𝐴,𝑏,𝑔,𝑧   𝐵,𝑏,𝑧   𝐹,𝑏,𝑔,𝑧   𝑧,𝐺   𝐻,𝑏,𝑔,𝑧   𝐾,𝑏,𝑔,𝑧   𝑁,𝑏,𝑔,𝑧   𝑃,𝑏,𝑧   𝑅,𝑏,𝑧   𝑇,𝑏,𝑧   𝑊,𝑏,𝑔,𝑧   𝑧,𝑌   𝐺,𝑏   𝐼,𝑏,𝑔,𝑧
Allowed substitution hints:   𝑋(𝑧,𝑔,𝑏)   𝑌(𝑔,𝑏)   𝑍(𝑧,𝑏)

Proof of Theorem cdlemk46
StepHypRef Expression
1 simp11 1200 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵) ∧ (𝐺𝐼) ≠ ( I ↾ 𝐵))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp31 1206 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵) ∧ (𝐺𝐼) ≠ ( I ↾ 𝐵))) → 𝐼𝑇)
3 simp13l 1285 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵) ∧ (𝐺𝐼) ≠ ( I ↾ 𝐵))) → 𝐺𝑇)
4 cdlemk5.h . . . . . 6 𝐻 = (LHyp‘𝐾)
5 cdlemk5.t . . . . . 6 𝑇 = ((LTrn‘𝐾)‘𝑊)
64, 5ltrncom 37946 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐼𝑇𝐺𝑇) → (𝐼𝐺) = (𝐺𝐼))
71, 2, 3, 6syl3anc 1368 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵) ∧ (𝐺𝐼) ≠ ( I ↾ 𝐵))) → (𝐼𝐺) = (𝐺𝐼))
87csbeq1d 3870 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵) ∧ (𝐺𝐼) ≠ ( I ↾ 𝐵))) → (𝐼𝐺) / 𝑔𝑋 = (𝐺𝐼) / 𝑔𝑋)
98fveq1d 6661 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵) ∧ (𝐺𝐼) ≠ ( I ↾ 𝐵))) → ((𝐼𝐺) / 𝑔𝑋𝑃) = ((𝐺𝐼) / 𝑔𝑋𝑃))
10 simp12 1201 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵) ∧ (𝐺𝐼) ≠ ( I ↾ 𝐵))) → (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)))
11 simp32 1207 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵) ∧ (𝐺𝐼) ≠ ( I ↾ 𝐵))) → 𝐼 ≠ ( I ↾ 𝐵))
122, 11jca 515 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵) ∧ (𝐺𝐼) ≠ ( I ↾ 𝐵))) → (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵)))
13 simp2 1134 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵) ∧ (𝐺𝐼) ≠ ( I ↾ 𝐵))) → (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)))
14 simp13r 1286 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵) ∧ (𝐺𝐼) ≠ ( I ↾ 𝐵))) → 𝐺 ≠ ( I ↾ 𝐵))
15 simp33 1208 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵) ∧ (𝐺𝐼) ≠ ( I ↾ 𝐵))) → (𝐺𝐼) ≠ ( I ↾ 𝐵))
167, 15eqnetrd 3081 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵) ∧ (𝐺𝐼) ≠ ( I ↾ 𝐵))) → (𝐼𝐺) ≠ ( I ↾ 𝐵))
17 cdlemk5.b . . . 4 𝐵 = (Base‘𝐾)
18 cdlemk5.l . . . 4 = (le‘𝐾)
19 cdlemk5.j . . . 4 = (join‘𝐾)
20 cdlemk5.m . . . 4 = (meet‘𝐾)
21 cdlemk5.a . . . 4 𝐴 = (Atoms‘𝐾)
22 cdlemk5.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
23 cdlemk5.z . . . 4 𝑍 = ((𝑃 (𝑅𝑏)) ((𝑁𝑃) (𝑅‘(𝑏𝐹))))
24 cdlemk5.y . . . 4 𝑌 = ((𝑃 (𝑅𝑔)) (𝑍 (𝑅‘(𝑔𝑏))))
25 cdlemk5.x . . . 4 𝑋 = (𝑧𝑇𝑏𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅𝑏) ≠ (𝑅𝐹) ∧ (𝑅𝑏) ≠ (𝑅𝑔)) → (𝑧𝑃) = 𝑌))
2617, 18, 19, 20, 21, 4, 5, 22, 23, 24, 25cdlemk45 38155 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵) ∧ (𝐼𝐺) ≠ ( I ↾ 𝐵))) → ((𝐼𝐺) / 𝑔𝑋𝑃) ((𝐺 / 𝑔𝑋𝑃) (𝑅𝐼)))
271, 10, 12, 13, 3, 14, 16, 26syl313anc 1391 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵) ∧ (𝐺𝐼) ≠ ( I ↾ 𝐵))) → ((𝐼𝐺) / 𝑔𝑋𝑃) ((𝐺 / 𝑔𝑋𝑃) (𝑅𝐼)))
289, 27eqbrtrrd 5077 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐹𝑇𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺𝑇𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐼𝑇𝐼 ≠ ( I ↾ 𝐵) ∧ (𝐺𝐼) ≠ ( I ↾ 𝐵))) → ((𝐺𝐼) / 𝑔𝑋𝑃) ((𝐺 / 𝑔𝑋𝑃) (𝑅𝐼)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2115   ≠ wne 3014  ∀wral 3133  ⦋csb 3866   class class class wbr 5053   I cid 5447  ◡ccnv 5542   ↾ cres 5545   ∘ ccom 5547  ‘cfv 6344  ℩crio 7103  (class class class)co 7146  Basecbs 16481  lecple 16570  joincjn 17552  meetcmee 17553  Atomscatm 36471  HLchlt 36558  LHypclh 37192  LTrncltrn 37309  trLctrl 37366 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7452  ax-riotaBAD 36161 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4826  df-iun 4908  df-iin 4909  df-br 5054  df-opab 5116  df-mpt 5134  df-id 5448  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-riota 7104  df-ov 7149  df-oprab 7150  df-mpo 7151  df-1st 7681  df-2nd 7682  df-undef 7931  df-map 8400  df-proset 17536  df-poset 17554  df-plt 17566  df-lub 17582  df-glb 17583  df-join 17584  df-meet 17585  df-p0 17647  df-p1 17648  df-lat 17654  df-clat 17716  df-oposet 36384  df-ol 36386  df-oml 36387  df-covers 36474  df-ats 36475  df-atl 36506  df-cvlat 36530  df-hlat 36559  df-llines 36706  df-lplanes 36707  df-lvols 36708  df-lines 36709  df-psubsp 36711  df-pmap 36712  df-padd 37004  df-lhyp 37196  df-laut 37197  df-ldil 37312  df-ltrn 37313  df-trl 37367 This theorem is referenced by:  cdlemk47  38157
 Copyright terms: Public domain W3C validator