MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl323anc Structured version   Visualization version   GIF version

Theorem syl323anc 1402
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
Hypotheses
Ref Expression
syl3anc.1 (𝜑𝜓)
syl3anc.2 (𝜑𝜒)
syl3anc.3 (𝜑𝜃)
syl3Xanc.4 (𝜑𝜏)
syl23anc.5 (𝜑𝜂)
syl33anc.6 (𝜑𝜁)
syl133anc.7 (𝜑𝜎)
syl233anc.8 (𝜑𝜌)
syl323anc.9 (((𝜓𝜒𝜃) ∧ (𝜏𝜂) ∧ (𝜁𝜎𝜌)) → 𝜇)
Assertion
Ref Expression
syl323anc (𝜑𝜇)

Proof of Theorem syl323anc
StepHypRef Expression
1 syl3anc.1 . 2 (𝜑𝜓)
2 syl3anc.2 . 2 (𝜑𝜒)
3 syl3anc.3 . 2 (𝜑𝜃)
4 syl3Xanc.4 . . 3 (𝜑𝜏)
5 syl23anc.5 . . 3 (𝜑𝜂)
64, 5jca 511 . 2 (𝜑 → (𝜏𝜂))
7 syl33anc.6 . 2 (𝜑𝜁)
8 syl133anc.7 . 2 (𝜑𝜎)
9 syl233anc.8 . 2 (𝜑𝜌)
10 syl323anc.9 . 2 (((𝜓𝜒𝜃) ∧ (𝜏𝜂) ∧ (𝜁𝜎𝜌)) → 𝜇)
111, 2, 3, 6, 7, 8, 9, 10syl313anc 1396 1 (𝜑𝜇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  4atlem11  39588  dalem52  39703  dath2  39716  dalawlem1  39850  dalaw  39865  cdlemb2  40020  4atexlem7  40054  cdleme7ga  40227  cdleme18a  40270  cdleme18c  40272  cdleme21f  40311  cdleme26f2ALTN  40343  cdleme26f2  40344  cdleme27a  40346  cdlemg17dN  40642  cdlemg18a  40657  cdlemg31d  40679  cdlemg48  40716  cdlemj1  40800  dihord4  41237
  Copyright terms: Public domain W3C validator