MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl323anc Structured version   Visualization version   GIF version

Theorem syl323anc 1402
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.)
Hypotheses
Ref Expression
syl3anc.1 (𝜑𝜓)
syl3anc.2 (𝜑𝜒)
syl3anc.3 (𝜑𝜃)
syl3Xanc.4 (𝜑𝜏)
syl23anc.5 (𝜑𝜂)
syl33anc.6 (𝜑𝜁)
syl133anc.7 (𝜑𝜎)
syl233anc.8 (𝜑𝜌)
syl323anc.9 (((𝜓𝜒𝜃) ∧ (𝜏𝜂) ∧ (𝜁𝜎𝜌)) → 𝜇)
Assertion
Ref Expression
syl323anc (𝜑𝜇)

Proof of Theorem syl323anc
StepHypRef Expression
1 syl3anc.1 . 2 (𝜑𝜓)
2 syl3anc.2 . 2 (𝜑𝜒)
3 syl3anc.3 . 2 (𝜑𝜃)
4 syl3Xanc.4 . . 3 (𝜑𝜏)
5 syl23anc.5 . . 3 (𝜑𝜂)
64, 5jca 511 . 2 (𝜑 → (𝜏𝜂))
7 syl33anc.6 . 2 (𝜑𝜁)
8 syl133anc.7 . 2 (𝜑𝜎)
9 syl233anc.8 . 2 (𝜑𝜌)
10 syl323anc.9 . 2 (((𝜓𝜒𝜃) ∧ (𝜏𝜂) ∧ (𝜁𝜎𝜌)) → 𝜇)
111, 2, 3, 6, 7, 8, 9, 10syl313anc 1396 1 (𝜑𝜇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  4atlem11  39633  dalem52  39748  dath2  39761  dalawlem1  39895  dalaw  39910  cdlemb2  40065  4atexlem7  40099  cdleme7ga  40272  cdleme18a  40315  cdleme18c  40317  cdleme21f  40356  cdleme26f2ALTN  40388  cdleme26f2  40389  cdleme27a  40391  cdlemg17dN  40687  cdlemg18a  40702  cdlemg31d  40724  cdlemg48  40761  cdlemj1  40845  dihord4  41282
  Copyright terms: Public domain W3C validator