| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl323anc | Structured version Visualization version GIF version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| syl3anc.1 | ⊢ (𝜑 → 𝜓) |
| syl3anc.2 | ⊢ (𝜑 → 𝜒) |
| syl3anc.3 | ⊢ (𝜑 → 𝜃) |
| syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
| syl23anc.5 | ⊢ (𝜑 → 𝜂) |
| syl33anc.6 | ⊢ (𝜑 → 𝜁) |
| syl133anc.7 | ⊢ (𝜑 → 𝜎) |
| syl233anc.8 | ⊢ (𝜑 → 𝜌) |
| syl323anc.9 | ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂) ∧ (𝜁 ∧ 𝜎 ∧ 𝜌)) → 𝜇) |
| Ref | Expression |
|---|---|
| syl323anc | ⊢ (𝜑 → 𝜇) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3anc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | syl3anc.2 | . 2 ⊢ (𝜑 → 𝜒) | |
| 3 | syl3anc.3 | . 2 ⊢ (𝜑 → 𝜃) | |
| 4 | syl3Xanc.4 | . . 3 ⊢ (𝜑 → 𝜏) | |
| 5 | syl23anc.5 | . . 3 ⊢ (𝜑 → 𝜂) | |
| 6 | 4, 5 | jca 511 | . 2 ⊢ (𝜑 → (𝜏 ∧ 𝜂)) |
| 7 | syl33anc.6 | . 2 ⊢ (𝜑 → 𝜁) | |
| 8 | syl133anc.7 | . 2 ⊢ (𝜑 → 𝜎) | |
| 9 | syl233anc.8 | . 2 ⊢ (𝜑 → 𝜌) | |
| 10 | syl323anc.9 | . 2 ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂) ∧ (𝜁 ∧ 𝜎 ∧ 𝜌)) → 𝜇) | |
| 11 | 1, 2, 3, 6, 7, 8, 9, 10 | syl313anc 1396 | 1 ⊢ (𝜑 → 𝜇) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 4atlem11 39633 dalem52 39748 dath2 39761 dalawlem1 39895 dalaw 39910 cdlemb2 40065 4atexlem7 40099 cdleme7ga 40272 cdleme18a 40315 cdleme18c 40317 cdleme21f 40356 cdleme26f2ALTN 40388 cdleme26f2 40389 cdleme27a 40391 cdlemg17dN 40687 cdlemg18a 40702 cdlemg31d 40724 cdlemg48 40761 cdlemj1 40845 dihord4 41282 |
| Copyright terms: Public domain | W3C validator |