| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl323anc | Structured version Visualization version GIF version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| syl3anc.1 | ⊢ (𝜑 → 𝜓) |
| syl3anc.2 | ⊢ (𝜑 → 𝜒) |
| syl3anc.3 | ⊢ (𝜑 → 𝜃) |
| syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
| syl23anc.5 | ⊢ (𝜑 → 𝜂) |
| syl33anc.6 | ⊢ (𝜑 → 𝜁) |
| syl133anc.7 | ⊢ (𝜑 → 𝜎) |
| syl233anc.8 | ⊢ (𝜑 → 𝜌) |
| syl323anc.9 | ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂) ∧ (𝜁 ∧ 𝜎 ∧ 𝜌)) → 𝜇) |
| Ref | Expression |
|---|---|
| syl323anc | ⊢ (𝜑 → 𝜇) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3anc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | syl3anc.2 | . 2 ⊢ (𝜑 → 𝜒) | |
| 3 | syl3anc.3 | . 2 ⊢ (𝜑 → 𝜃) | |
| 4 | syl3Xanc.4 | . . 3 ⊢ (𝜑 → 𝜏) | |
| 5 | syl23anc.5 | . . 3 ⊢ (𝜑 → 𝜂) | |
| 6 | 4, 5 | jca 511 | . 2 ⊢ (𝜑 → (𝜏 ∧ 𝜂)) |
| 7 | syl33anc.6 | . 2 ⊢ (𝜑 → 𝜁) | |
| 8 | syl133anc.7 | . 2 ⊢ (𝜑 → 𝜎) | |
| 9 | syl233anc.8 | . 2 ⊢ (𝜑 → 𝜌) | |
| 10 | syl323anc.9 | . 2 ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂) ∧ (𝜁 ∧ 𝜎 ∧ 𝜌)) → 𝜇) | |
| 11 | 1, 2, 3, 6, 7, 8, 9, 10 | syl313anc 1396 | 1 ⊢ (𝜑 → 𝜇) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 4atlem11 39588 dalem52 39703 dath2 39716 dalawlem1 39850 dalaw 39865 cdlemb2 40020 4atexlem7 40054 cdleme7ga 40227 cdleme18a 40270 cdleme18c 40272 cdleme21f 40311 cdleme26f2ALTN 40343 cdleme26f2 40344 cdleme27a 40346 cdlemg17dN 40642 cdlemg18a 40657 cdlemg31d 40679 cdlemg48 40716 cdlemj1 40800 dihord4 41237 |
| Copyright terms: Public domain | W3C validator |