Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > syl323anc | Structured version Visualization version GIF version |
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
Ref | Expression |
---|---|
syl3anc.1 | ⊢ (𝜑 → 𝜓) |
syl3anc.2 | ⊢ (𝜑 → 𝜒) |
syl3anc.3 | ⊢ (𝜑 → 𝜃) |
syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
syl23anc.5 | ⊢ (𝜑 → 𝜂) |
syl33anc.6 | ⊢ (𝜑 → 𝜁) |
syl133anc.7 | ⊢ (𝜑 → 𝜎) |
syl233anc.8 | ⊢ (𝜑 → 𝜌) |
syl323anc.9 | ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂) ∧ (𝜁 ∧ 𝜎 ∧ 𝜌)) → 𝜇) |
Ref | Expression |
---|---|
syl323anc | ⊢ (𝜑 → 𝜇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3anc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | syl3anc.2 | . 2 ⊢ (𝜑 → 𝜒) | |
3 | syl3anc.3 | . 2 ⊢ (𝜑 → 𝜃) | |
4 | syl3Xanc.4 | . . 3 ⊢ (𝜑 → 𝜏) | |
5 | syl23anc.5 | . . 3 ⊢ (𝜑 → 𝜂) | |
6 | 4, 5 | jca 515 | . 2 ⊢ (𝜑 → (𝜏 ∧ 𝜂)) |
7 | syl33anc.6 | . 2 ⊢ (𝜑 → 𝜁) | |
8 | syl133anc.7 | . 2 ⊢ (𝜑 → 𝜎) | |
9 | syl233anc.8 | . 2 ⊢ (𝜑 → 𝜌) | |
10 | syl323anc.9 | . 2 ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂) ∧ (𝜁 ∧ 𝜎 ∧ 𝜌)) → 𝜇) | |
11 | 1, 2, 3, 6, 7, 8, 9, 10 | syl313anc 1395 | 1 ⊢ (𝜑 → 𝜇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1088 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 df-3an 1090 |
This theorem is referenced by: 4atlem11 37235 dalem52 37350 dath2 37363 dalawlem1 37497 dalaw 37512 cdlemb2 37667 4atexlem7 37701 cdleme7ga 37874 cdleme18a 37917 cdleme18c 37919 cdleme21f 37958 cdleme26f2ALTN 37990 cdleme26f2 37991 cdleme27a 37993 cdlemg17dN 38289 cdlemg18a 38304 cdlemg31d 38326 cdlemg48 38363 cdlemj1 38447 dihord4 38884 |
Copyright terms: Public domain | W3C validator |