Proof of Theorem osumcllem6N
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simp11 1204 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑝 ∈ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ 𝑌 ∧ 𝑞 ≤ (𝑟 ∨ 𝑝))) → 𝐾 ∈ HL) | 
| 2 |  | simp12 1205 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑝 ∈ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ 𝑌 ∧ 𝑞 ≤ (𝑟 ∨ 𝑝))) → 𝑋 ⊆ 𝐴) | 
| 3 |  | simp13 1206 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑝 ∈ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ 𝑌 ∧ 𝑞 ≤ (𝑟 ∨ 𝑝))) → 𝑌 ⊆ 𝐴) | 
| 4 |  | simp2r 1201 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑝 ∈ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ 𝑌 ∧ 𝑞 ≤ (𝑟 ∨ 𝑝))) → 𝑝 ∈ 𝐴) | 
| 5 |  | simp31 1210 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑝 ∈ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ 𝑌 ∧ 𝑞 ≤ (𝑟 ∨ 𝑝))) → 𝑟 ∈ 𝑋) | 
| 6 |  | simp32 1211 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑝 ∈ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ 𝑌 ∧ 𝑞 ≤ (𝑟 ∨ 𝑝))) → 𝑞 ∈ 𝑌) | 
| 7 | 3, 6 | sseldd 3984 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑝 ∈ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ 𝑌 ∧ 𝑞 ≤ (𝑟 ∨ 𝑝))) → 𝑞 ∈ 𝐴) | 
| 8 | 2, 5 | sseldd 3984 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑝 ∈ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ 𝑌 ∧ 𝑞 ≤ (𝑟 ∨ 𝑝))) → 𝑟 ∈ 𝐴) | 
| 9 | 7, 4, 8 | 3jca 1129 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑝 ∈ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ 𝑌 ∧ 𝑞 ≤ (𝑟 ∨ 𝑝))) → (𝑞 ∈ 𝐴 ∧ 𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴)) | 
| 10 |  | simp2l 1200 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑝 ∈ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ 𝑌 ∧ 𝑞 ≤ (𝑟 ∨ 𝑝))) → 𝑋 ⊆ ( ⊥ ‘𝑌)) | 
| 11 |  | osumcllem.l | . . . . . 6
⊢  ≤ =
(le‘𝐾) | 
| 12 |  | osumcllem.j | . . . . . 6
⊢  ∨ =
(join‘𝐾) | 
| 13 |  | osumcllem.a | . . . . . 6
⊢ 𝐴 = (Atoms‘𝐾) | 
| 14 |  | osumcllem.p | . . . . . 6
⊢  + =
(+𝑃‘𝐾) | 
| 15 |  | osumcllem.o | . . . . . 6
⊢  ⊥ =
(⊥𝑃‘𝐾) | 
| 16 |  | osumcllem.c | . . . . . 6
⊢ 𝐶 = (PSubCl‘𝐾) | 
| 17 |  | osumcllem.m | . . . . . 6
⊢ 𝑀 = (𝑋 + {𝑝}) | 
| 18 |  | osumcllem.u | . . . . . 6
⊢ 𝑈 = ( ⊥ ‘( ⊥
‘(𝑋 + 𝑌))) | 
| 19 | 11, 12, 13, 14, 15, 16, 17, 18 | osumcllem4N 39961 | . . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ 𝑌)) → 𝑞 ≠ 𝑟) | 
| 20 | 1, 3, 10, 5, 6, 19 | syl32anc 1380 | . . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑝 ∈ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ 𝑌 ∧ 𝑞 ≤ (𝑟 ∨ 𝑝))) → 𝑞 ≠ 𝑟) | 
| 21 | 1, 9, 20 | 3jca 1129 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑝 ∈ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ 𝑌 ∧ 𝑞 ≤ (𝑟 ∨ 𝑝))) → (𝐾 ∈ HL ∧ (𝑞 ∈ 𝐴 ∧ 𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴) ∧ 𝑞 ≠ 𝑟)) | 
| 22 |  | simp33 1212 | . . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑝 ∈ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ 𝑌 ∧ 𝑞 ≤ (𝑟 ∨ 𝑝))) → 𝑞 ≤ (𝑟 ∨ 𝑝)) | 
| 23 | 11, 12, 13 | hlatexch1 39397 | . . 3
⊢ ((𝐾 ∈ HL ∧ (𝑞 ∈ 𝐴 ∧ 𝑝 ∈ 𝐴 ∧ 𝑟 ∈ 𝐴) ∧ 𝑞 ≠ 𝑟) → (𝑞 ≤ (𝑟 ∨ 𝑝) → 𝑝 ≤ (𝑟 ∨ 𝑞))) | 
| 24 | 21, 22, 23 | sylc 65 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑝 ∈ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ 𝑌 ∧ 𝑞 ≤ (𝑟 ∨ 𝑝))) → 𝑝 ≤ (𝑟 ∨ 𝑞)) | 
| 25 | 11, 12, 13, 14, 15, 16, 17, 18 | osumcllem5N 39962 | . 2
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ 𝑝 ∈ 𝐴 ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ 𝑌 ∧ 𝑝 ≤ (𝑟 ∨ 𝑞))) → 𝑝 ∈ (𝑋 + 𝑌)) | 
| 26 | 1, 2, 3, 4, 5, 6, 24, 25 | syl313anc 1396 | 1
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑋 ⊆ ( ⊥ ‘𝑌) ∧ 𝑝 ∈ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ 𝑌 ∧ 𝑞 ≤ (𝑟 ∨ 𝑝))) → 𝑝 ∈ (𝑋 + 𝑌)) |