![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl133anc | Structured version Visualization version GIF version |
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
Ref | Expression |
---|---|
syl3anc.1 | ⊢ (𝜑 → 𝜓) |
syl3anc.2 | ⊢ (𝜑 → 𝜒) |
syl3anc.3 | ⊢ (𝜑 → 𝜃) |
syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
syl23anc.5 | ⊢ (𝜑 → 𝜂) |
syl33anc.6 | ⊢ (𝜑 → 𝜁) |
syl133anc.7 | ⊢ (𝜑 → 𝜎) |
syl133anc.8 | ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃 ∧ 𝜏) ∧ (𝜂 ∧ 𝜁 ∧ 𝜎)) → 𝜌) |
Ref | Expression |
---|---|
syl133anc | ⊢ (𝜑 → 𝜌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3anc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | syl3anc.2 | . 2 ⊢ (𝜑 → 𝜒) | |
3 | syl3anc.3 | . 2 ⊢ (𝜑 → 𝜃) | |
4 | syl3Xanc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
5 | syl23anc.5 | . . 3 ⊢ (𝜑 → 𝜂) | |
6 | syl33anc.6 | . . 3 ⊢ (𝜑 → 𝜁) | |
7 | syl133anc.7 | . . 3 ⊢ (𝜑 → 𝜎) | |
8 | 5, 6, 7 | 3jca 1128 | . 2 ⊢ (𝜑 → (𝜂 ∧ 𝜁 ∧ 𝜎)) |
9 | syl133anc.8 | . 2 ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃 ∧ 𝜏) ∧ (𝜂 ∧ 𝜁 ∧ 𝜎)) → 𝜌) | |
10 | 1, 2, 3, 4, 8, 9 | syl131anc 1383 | 1 ⊢ (𝜑 → 𝜌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: syl233anc 1399 mdetuni0 22648 frgrwopreg 30355 cgrtr4d 35949 cgrtrand 35957 cgrtr3and 35959 cgrcoml 35960 cgrextendand 35973 segconeu 35975 btwnouttr2 35986 cgr3tr4 36016 cgrxfr 36019 btwnxfr 36020 lineext 36040 brofs2 36041 brifs2 36042 fscgr 36044 btwnconn1lem2 36052 btwnconn1lem4 36054 btwnconn1lem8 36058 btwnconn1lem11 36061 brsegle2 36073 seglecgr12im 36074 segletr 36078 outsidele 36096 dalem13 39633 2llnma1b 39743 cdlemblem 39750 cdlemb 39751 lhpexle3 39969 lhpat 40000 4atex2-0bOLDN 40036 cdlemd4 40158 cdleme14 40230 cdleme19b 40261 cdleme20f 40271 cdleme20j 40275 cdleme20k 40276 cdleme20l2 40278 cdleme20 40281 cdleme22a 40297 cdleme22e 40301 cdleme26e 40316 cdleme28 40330 cdleme38n 40421 cdleme41sn4aw 40432 cdleme41snaw 40433 cdlemg6c 40577 cdlemg6 40580 cdlemg8c 40586 cdlemg9 40591 cdlemg10a 40597 cdlemg12c 40602 cdlemg12d 40603 cdlemg18d 40638 cdlemg18 40639 cdlemg20 40642 cdlemg21 40643 cdlemg22 40644 cdlemg28a 40650 cdlemg33b0 40658 cdlemg28b 40660 cdlemg33a 40663 cdlemg33 40668 cdlemg34 40669 cdlemg36 40671 cdlemg38 40672 cdlemg46 40692 cdlemk6 40794 cdlemki 40798 cdlemksv2 40804 cdlemk11 40806 cdlemk6u 40819 cdleml4N 40936 cdlemn11pre 41167 |
Copyright terms: Public domain | W3C validator |