| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl133anc | Structured version Visualization version GIF version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| syl3anc.1 | ⊢ (𝜑 → 𝜓) |
| syl3anc.2 | ⊢ (𝜑 → 𝜒) |
| syl3anc.3 | ⊢ (𝜑 → 𝜃) |
| syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
| syl23anc.5 | ⊢ (𝜑 → 𝜂) |
| syl33anc.6 | ⊢ (𝜑 → 𝜁) |
| syl133anc.7 | ⊢ (𝜑 → 𝜎) |
| syl133anc.8 | ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃 ∧ 𝜏) ∧ (𝜂 ∧ 𝜁 ∧ 𝜎)) → 𝜌) |
| Ref | Expression |
|---|---|
| syl133anc | ⊢ (𝜑 → 𝜌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3anc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | syl3anc.2 | . 2 ⊢ (𝜑 → 𝜒) | |
| 3 | syl3anc.3 | . 2 ⊢ (𝜑 → 𝜃) | |
| 4 | syl3Xanc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
| 5 | syl23anc.5 | . . 3 ⊢ (𝜑 → 𝜂) | |
| 6 | syl33anc.6 | . . 3 ⊢ (𝜑 → 𝜁) | |
| 7 | syl133anc.7 | . . 3 ⊢ (𝜑 → 𝜎) | |
| 8 | 5, 6, 7 | 3jca 1128 | . 2 ⊢ (𝜑 → (𝜂 ∧ 𝜁 ∧ 𝜎)) |
| 9 | syl133anc.8 | . 2 ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃 ∧ 𝜏) ∧ (𝜂 ∧ 𝜁 ∧ 𝜎)) → 𝜌) | |
| 10 | 1, 2, 3, 4, 8, 9 | syl131anc 1385 | 1 ⊢ (𝜑 → 𝜌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: syl233anc 1401 mdetuni0 22508 frgrwopreg 30252 cgrtr4d 35973 cgrtrand 35981 cgrtr3and 35983 cgrcoml 35984 cgrextendand 35997 segconeu 35999 btwnouttr2 36010 cgr3tr4 36040 cgrxfr 36043 btwnxfr 36044 lineext 36064 brofs2 36065 brifs2 36066 fscgr 36068 btwnconn1lem2 36076 btwnconn1lem4 36078 btwnconn1lem8 36082 btwnconn1lem11 36085 brsegle2 36097 seglecgr12im 36098 segletr 36102 outsidele 36120 dalem13 39670 2llnma1b 39780 cdlemblem 39787 cdlemb 39788 lhpexle3 40006 lhpat 40037 4atex2-0bOLDN 40073 cdlemd4 40195 cdleme14 40267 cdleme19b 40298 cdleme20f 40308 cdleme20j 40312 cdleme20k 40313 cdleme20l2 40315 cdleme20 40318 cdleme22a 40334 cdleme22e 40338 cdleme26e 40353 cdleme28 40367 cdleme38n 40458 cdleme41sn4aw 40469 cdleme41snaw 40470 cdlemg6c 40614 cdlemg6 40617 cdlemg8c 40623 cdlemg9 40628 cdlemg10a 40634 cdlemg12c 40639 cdlemg12d 40640 cdlemg18d 40675 cdlemg18 40676 cdlemg20 40679 cdlemg21 40680 cdlemg22 40681 cdlemg28a 40687 cdlemg33b0 40695 cdlemg28b 40697 cdlemg33a 40700 cdlemg33 40705 cdlemg34 40706 cdlemg36 40708 cdlemg38 40709 cdlemg46 40729 cdlemk6 40831 cdlemki 40835 cdlemksv2 40841 cdlemk11 40843 cdlemk6u 40856 cdleml4N 40973 cdlemn11pre 41204 |
| Copyright terms: Public domain | W3C validator |