| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl133anc | Structured version Visualization version GIF version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| syl3anc.1 | ⊢ (𝜑 → 𝜓) |
| syl3anc.2 | ⊢ (𝜑 → 𝜒) |
| syl3anc.3 | ⊢ (𝜑 → 𝜃) |
| syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
| syl23anc.5 | ⊢ (𝜑 → 𝜂) |
| syl33anc.6 | ⊢ (𝜑 → 𝜁) |
| syl133anc.7 | ⊢ (𝜑 → 𝜎) |
| syl133anc.8 | ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃 ∧ 𝜏) ∧ (𝜂 ∧ 𝜁 ∧ 𝜎)) → 𝜌) |
| Ref | Expression |
|---|---|
| syl133anc | ⊢ (𝜑 → 𝜌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3anc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | syl3anc.2 | . 2 ⊢ (𝜑 → 𝜒) | |
| 3 | syl3anc.3 | . 2 ⊢ (𝜑 → 𝜃) | |
| 4 | syl3Xanc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
| 5 | syl23anc.5 | . . 3 ⊢ (𝜑 → 𝜂) | |
| 6 | syl33anc.6 | . . 3 ⊢ (𝜑 → 𝜁) | |
| 7 | syl133anc.7 | . . 3 ⊢ (𝜑 → 𝜎) | |
| 8 | 5, 6, 7 | 3jca 1128 | . 2 ⊢ (𝜑 → (𝜂 ∧ 𝜁 ∧ 𝜎)) |
| 9 | syl133anc.8 | . 2 ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃 ∧ 𝜏) ∧ (𝜂 ∧ 𝜁 ∧ 𝜎)) → 𝜌) | |
| 10 | 1, 2, 3, 4, 8, 9 | syl131anc 1385 | 1 ⊢ (𝜑 → 𝜌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: syl233anc 1401 mdetuni0 22515 frgrwopreg 30259 cgrtr4d 35980 cgrtrand 35988 cgrtr3and 35990 cgrcoml 35991 cgrextendand 36004 segconeu 36006 btwnouttr2 36017 cgr3tr4 36047 cgrxfr 36050 btwnxfr 36051 lineext 36071 brofs2 36072 brifs2 36073 fscgr 36075 btwnconn1lem2 36083 btwnconn1lem4 36085 btwnconn1lem8 36089 btwnconn1lem11 36092 brsegle2 36104 seglecgr12im 36105 segletr 36109 outsidele 36127 dalem13 39677 2llnma1b 39787 cdlemblem 39794 cdlemb 39795 lhpexle3 40013 lhpat 40044 4atex2-0bOLDN 40080 cdlemd4 40202 cdleme14 40274 cdleme19b 40305 cdleme20f 40315 cdleme20j 40319 cdleme20k 40320 cdleme20l2 40322 cdleme20 40325 cdleme22a 40341 cdleme22e 40345 cdleme26e 40360 cdleme28 40374 cdleme38n 40465 cdleme41sn4aw 40476 cdleme41snaw 40477 cdlemg6c 40621 cdlemg6 40624 cdlemg8c 40630 cdlemg9 40635 cdlemg10a 40641 cdlemg12c 40646 cdlemg12d 40647 cdlemg18d 40682 cdlemg18 40683 cdlemg20 40686 cdlemg21 40687 cdlemg22 40688 cdlemg28a 40694 cdlemg33b0 40702 cdlemg28b 40704 cdlemg33a 40707 cdlemg33 40712 cdlemg34 40713 cdlemg36 40715 cdlemg38 40716 cdlemg46 40736 cdlemk6 40838 cdlemki 40842 cdlemksv2 40848 cdlemk11 40850 cdlemk6u 40863 cdleml4N 40980 cdlemn11pre 41211 |
| Copyright terms: Public domain | W3C validator |