![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl133anc | Structured version Visualization version GIF version |
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
Ref | Expression |
---|---|
syl3anc.1 | ⊢ (𝜑 → 𝜓) |
syl3anc.2 | ⊢ (𝜑 → 𝜒) |
syl3anc.3 | ⊢ (𝜑 → 𝜃) |
syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
syl23anc.5 | ⊢ (𝜑 → 𝜂) |
syl33anc.6 | ⊢ (𝜑 → 𝜁) |
syl133anc.7 | ⊢ (𝜑 → 𝜎) |
syl133anc.8 | ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃 ∧ 𝜏) ∧ (𝜂 ∧ 𝜁 ∧ 𝜎)) → 𝜌) |
Ref | Expression |
---|---|
syl133anc | ⊢ (𝜑 → 𝜌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3anc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | syl3anc.2 | . 2 ⊢ (𝜑 → 𝜒) | |
3 | syl3anc.3 | . 2 ⊢ (𝜑 → 𝜃) | |
4 | syl3Xanc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
5 | syl23anc.5 | . . 3 ⊢ (𝜑 → 𝜂) | |
6 | syl33anc.6 | . . 3 ⊢ (𝜑 → 𝜁) | |
7 | syl133anc.7 | . . 3 ⊢ (𝜑 → 𝜎) | |
8 | 5, 6, 7 | 3jca 1127 | . 2 ⊢ (𝜑 → (𝜂 ∧ 𝜁 ∧ 𝜎)) |
9 | syl133anc.8 | . 2 ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃 ∧ 𝜏) ∧ (𝜂 ∧ 𝜁 ∧ 𝜎)) → 𝜌) | |
10 | 1, 2, 3, 4, 8, 9 | syl131anc 1382 | 1 ⊢ (𝜑 → 𝜌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
This theorem is referenced by: syl233anc 1398 mdetuni0 22643 frgrwopreg 30352 cgrtr4d 35967 cgrtrand 35975 cgrtr3and 35977 cgrcoml 35978 cgrextendand 35991 segconeu 35993 btwnouttr2 36004 cgr3tr4 36034 cgrxfr 36037 btwnxfr 36038 lineext 36058 brofs2 36059 brifs2 36060 fscgr 36062 btwnconn1lem2 36070 btwnconn1lem4 36072 btwnconn1lem8 36076 btwnconn1lem11 36079 brsegle2 36091 seglecgr12im 36092 segletr 36096 outsidele 36114 dalem13 39659 2llnma1b 39769 cdlemblem 39776 cdlemb 39777 lhpexle3 39995 lhpat 40026 4atex2-0bOLDN 40062 cdlemd4 40184 cdleme14 40256 cdleme19b 40287 cdleme20f 40297 cdleme20j 40301 cdleme20k 40302 cdleme20l2 40304 cdleme20 40307 cdleme22a 40323 cdleme22e 40327 cdleme26e 40342 cdleme28 40356 cdleme38n 40447 cdleme41sn4aw 40458 cdleme41snaw 40459 cdlemg6c 40603 cdlemg6 40606 cdlemg8c 40612 cdlemg9 40617 cdlemg10a 40623 cdlemg12c 40628 cdlemg12d 40629 cdlemg18d 40664 cdlemg18 40665 cdlemg20 40668 cdlemg21 40669 cdlemg22 40670 cdlemg28a 40676 cdlemg33b0 40684 cdlemg28b 40686 cdlemg33a 40689 cdlemg33 40694 cdlemg34 40695 cdlemg36 40697 cdlemg38 40698 cdlemg46 40718 cdlemk6 40820 cdlemki 40824 cdlemksv2 40830 cdlemk11 40832 cdlemk6u 40845 cdleml4N 40962 cdlemn11pre 41193 |
Copyright terms: Public domain | W3C validator |