| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl133anc | Structured version Visualization version GIF version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| syl3anc.1 | ⊢ (𝜑 → 𝜓) |
| syl3anc.2 | ⊢ (𝜑 → 𝜒) |
| syl3anc.3 | ⊢ (𝜑 → 𝜃) |
| syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
| syl23anc.5 | ⊢ (𝜑 → 𝜂) |
| syl33anc.6 | ⊢ (𝜑 → 𝜁) |
| syl133anc.7 | ⊢ (𝜑 → 𝜎) |
| syl133anc.8 | ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃 ∧ 𝜏) ∧ (𝜂 ∧ 𝜁 ∧ 𝜎)) → 𝜌) |
| Ref | Expression |
|---|---|
| syl133anc | ⊢ (𝜑 → 𝜌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3anc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | syl3anc.2 | . 2 ⊢ (𝜑 → 𝜒) | |
| 3 | syl3anc.3 | . 2 ⊢ (𝜑 → 𝜃) | |
| 4 | syl3Xanc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
| 5 | syl23anc.5 | . . 3 ⊢ (𝜑 → 𝜂) | |
| 6 | syl33anc.6 | . . 3 ⊢ (𝜑 → 𝜁) | |
| 7 | syl133anc.7 | . . 3 ⊢ (𝜑 → 𝜎) | |
| 8 | 5, 6, 7 | 3jca 1128 | . 2 ⊢ (𝜑 → (𝜂 ∧ 𝜁 ∧ 𝜎)) |
| 9 | syl133anc.8 | . 2 ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃 ∧ 𝜏) ∧ (𝜂 ∧ 𝜁 ∧ 𝜎)) → 𝜌) | |
| 10 | 1, 2, 3, 4, 8, 9 | syl131anc 1385 | 1 ⊢ (𝜑 → 𝜌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: syl233anc 1401 mdetuni0 22537 frgrwopreg 30301 cgrtr4d 36025 cgrtrand 36033 cgrtr3and 36035 cgrcoml 36036 cgrextendand 36049 segconeu 36051 btwnouttr2 36062 cgr3tr4 36092 cgrxfr 36095 btwnxfr 36096 lineext 36116 brofs2 36117 brifs2 36118 fscgr 36120 btwnconn1lem2 36128 btwnconn1lem4 36130 btwnconn1lem8 36134 btwnconn1lem11 36137 brsegle2 36149 seglecgr12im 36150 segletr 36154 outsidele 36172 dalem13 39721 2llnma1b 39831 cdlemblem 39838 cdlemb 39839 lhpexle3 40057 lhpat 40088 4atex2-0bOLDN 40124 cdlemd4 40246 cdleme14 40318 cdleme19b 40349 cdleme20f 40359 cdleme20j 40363 cdleme20k 40364 cdleme20l2 40366 cdleme20 40369 cdleme22a 40385 cdleme22e 40389 cdleme26e 40404 cdleme28 40418 cdleme38n 40509 cdleme41sn4aw 40520 cdleme41snaw 40521 cdlemg6c 40665 cdlemg6 40668 cdlemg8c 40674 cdlemg9 40679 cdlemg10a 40685 cdlemg12c 40690 cdlemg12d 40691 cdlemg18d 40726 cdlemg18 40727 cdlemg20 40730 cdlemg21 40731 cdlemg22 40732 cdlemg28a 40738 cdlemg33b0 40746 cdlemg28b 40748 cdlemg33a 40751 cdlemg33 40756 cdlemg34 40757 cdlemg36 40759 cdlemg38 40760 cdlemg46 40780 cdlemk6 40882 cdlemki 40886 cdlemksv2 40892 cdlemk11 40894 cdlemk6u 40907 cdleml4N 41024 cdlemn11pre 41255 |
| Copyright terms: Public domain | W3C validator |