Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > syl133anc | Structured version Visualization version GIF version |
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
Ref | Expression |
---|---|
syl3anc.1 | ⊢ (𝜑 → 𝜓) |
syl3anc.2 | ⊢ (𝜑 → 𝜒) |
syl3anc.3 | ⊢ (𝜑 → 𝜃) |
syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
syl23anc.5 | ⊢ (𝜑 → 𝜂) |
syl33anc.6 | ⊢ (𝜑 → 𝜁) |
syl133anc.7 | ⊢ (𝜑 → 𝜎) |
syl133anc.8 | ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃 ∧ 𝜏) ∧ (𝜂 ∧ 𝜁 ∧ 𝜎)) → 𝜌) |
Ref | Expression |
---|---|
syl133anc | ⊢ (𝜑 → 𝜌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3anc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | syl3anc.2 | . 2 ⊢ (𝜑 → 𝜒) | |
3 | syl3anc.3 | . 2 ⊢ (𝜑 → 𝜃) | |
4 | syl3Xanc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
5 | syl23anc.5 | . . 3 ⊢ (𝜑 → 𝜂) | |
6 | syl33anc.6 | . . 3 ⊢ (𝜑 → 𝜁) | |
7 | syl133anc.7 | . . 3 ⊢ (𝜑 → 𝜎) | |
8 | 5, 6, 7 | 3jca 1126 | . 2 ⊢ (𝜑 → (𝜂 ∧ 𝜁 ∧ 𝜎)) |
9 | syl133anc.8 | . 2 ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃 ∧ 𝜏) ∧ (𝜂 ∧ 𝜁 ∧ 𝜎)) → 𝜌) | |
10 | 1, 2, 3, 4, 8, 9 | syl131anc 1381 | 1 ⊢ (𝜑 → 𝜌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: syl233anc 1397 mdetuni0 21678 frgrwopreg 28588 cgrtr4d 34214 cgrtrand 34222 cgrtr3and 34224 cgrcoml 34225 cgrextendand 34238 segconeu 34240 btwnouttr2 34251 cgr3tr4 34281 cgrxfr 34284 btwnxfr 34285 lineext 34305 brofs2 34306 brifs2 34307 fscgr 34309 btwnconn1lem2 34317 btwnconn1lem4 34319 btwnconn1lem8 34323 btwnconn1lem11 34326 brsegle2 34338 seglecgr12im 34339 segletr 34343 outsidele 34361 dalem13 37617 2llnma1b 37727 cdlemblem 37734 cdlemb 37735 lhpexle3 37953 lhpat 37984 4atex2-0bOLDN 38020 cdlemd4 38142 cdleme14 38214 cdleme19b 38245 cdleme20f 38255 cdleme20j 38259 cdleme20k 38260 cdleme20l2 38262 cdleme20 38265 cdleme22a 38281 cdleme22e 38285 cdleme26e 38300 cdleme28 38314 cdleme38n 38405 cdleme41sn4aw 38416 cdleme41snaw 38417 cdlemg6c 38561 cdlemg6 38564 cdlemg8c 38570 cdlemg9 38575 cdlemg10a 38581 cdlemg12c 38586 cdlemg12d 38587 cdlemg18d 38622 cdlemg18 38623 cdlemg20 38626 cdlemg21 38627 cdlemg22 38628 cdlemg28a 38634 cdlemg33b0 38642 cdlemg28b 38644 cdlemg33a 38647 cdlemg33 38652 cdlemg34 38653 cdlemg36 38655 cdlemg38 38656 cdlemg46 38676 cdlemk6 38778 cdlemki 38782 cdlemksv2 38788 cdlemk11 38790 cdlemk6u 38803 cdleml4N 38920 cdlemn11pre 39151 |
Copyright terms: Public domain | W3C validator |