| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl133anc | Structured version Visualization version GIF version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| syl3anc.1 | ⊢ (𝜑 → 𝜓) |
| syl3anc.2 | ⊢ (𝜑 → 𝜒) |
| syl3anc.3 | ⊢ (𝜑 → 𝜃) |
| syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
| syl23anc.5 | ⊢ (𝜑 → 𝜂) |
| syl33anc.6 | ⊢ (𝜑 → 𝜁) |
| syl133anc.7 | ⊢ (𝜑 → 𝜎) |
| syl133anc.8 | ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃 ∧ 𝜏) ∧ (𝜂 ∧ 𝜁 ∧ 𝜎)) → 𝜌) |
| Ref | Expression |
|---|---|
| syl133anc | ⊢ (𝜑 → 𝜌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3anc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | syl3anc.2 | . 2 ⊢ (𝜑 → 𝜒) | |
| 3 | syl3anc.3 | . 2 ⊢ (𝜑 → 𝜃) | |
| 4 | syl3Xanc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
| 5 | syl23anc.5 | . . 3 ⊢ (𝜑 → 𝜂) | |
| 6 | syl33anc.6 | . . 3 ⊢ (𝜑 → 𝜁) | |
| 7 | syl133anc.7 | . . 3 ⊢ (𝜑 → 𝜎) | |
| 8 | 5, 6, 7 | 3jca 1128 | . 2 ⊢ (𝜑 → (𝜂 ∧ 𝜁 ∧ 𝜎)) |
| 9 | syl133anc.8 | . 2 ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃 ∧ 𝜏) ∧ (𝜂 ∧ 𝜁 ∧ 𝜎)) → 𝜌) | |
| 10 | 1, 2, 3, 4, 8, 9 | syl131anc 1385 | 1 ⊢ (𝜑 → 𝜌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: syl233anc 1401 mdetuni0 22559 frgrwopreg 30304 cgrtr4d 36003 cgrtrand 36011 cgrtr3and 36013 cgrcoml 36014 cgrextendand 36027 segconeu 36029 btwnouttr2 36040 cgr3tr4 36070 cgrxfr 36073 btwnxfr 36074 lineext 36094 brofs2 36095 brifs2 36096 fscgr 36098 btwnconn1lem2 36106 btwnconn1lem4 36108 btwnconn1lem8 36112 btwnconn1lem11 36115 brsegle2 36127 seglecgr12im 36128 segletr 36132 outsidele 36150 dalem13 39695 2llnma1b 39805 cdlemblem 39812 cdlemb 39813 lhpexle3 40031 lhpat 40062 4atex2-0bOLDN 40098 cdlemd4 40220 cdleme14 40292 cdleme19b 40323 cdleme20f 40333 cdleme20j 40337 cdleme20k 40338 cdleme20l2 40340 cdleme20 40343 cdleme22a 40359 cdleme22e 40363 cdleme26e 40378 cdleme28 40392 cdleme38n 40483 cdleme41sn4aw 40494 cdleme41snaw 40495 cdlemg6c 40639 cdlemg6 40642 cdlemg8c 40648 cdlemg9 40653 cdlemg10a 40659 cdlemg12c 40664 cdlemg12d 40665 cdlemg18d 40700 cdlemg18 40701 cdlemg20 40704 cdlemg21 40705 cdlemg22 40706 cdlemg28a 40712 cdlemg33b0 40720 cdlemg28b 40722 cdlemg33a 40725 cdlemg33 40730 cdlemg34 40731 cdlemg36 40733 cdlemg38 40734 cdlemg46 40754 cdlemk6 40856 cdlemki 40860 cdlemksv2 40866 cdlemk11 40868 cdlemk6u 40881 cdleml4N 40998 cdlemn11pre 41229 |
| Copyright terms: Public domain | W3C validator |