| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl133anc | Structured version Visualization version GIF version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| syl3anc.1 | ⊢ (𝜑 → 𝜓) |
| syl3anc.2 | ⊢ (𝜑 → 𝜒) |
| syl3anc.3 | ⊢ (𝜑 → 𝜃) |
| syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
| syl23anc.5 | ⊢ (𝜑 → 𝜂) |
| syl33anc.6 | ⊢ (𝜑 → 𝜁) |
| syl133anc.7 | ⊢ (𝜑 → 𝜎) |
| syl133anc.8 | ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃 ∧ 𝜏) ∧ (𝜂 ∧ 𝜁 ∧ 𝜎)) → 𝜌) |
| Ref | Expression |
|---|---|
| syl133anc | ⊢ (𝜑 → 𝜌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3anc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | syl3anc.2 | . 2 ⊢ (𝜑 → 𝜒) | |
| 3 | syl3anc.3 | . 2 ⊢ (𝜑 → 𝜃) | |
| 4 | syl3Xanc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
| 5 | syl23anc.5 | . . 3 ⊢ (𝜑 → 𝜂) | |
| 6 | syl33anc.6 | . . 3 ⊢ (𝜑 → 𝜁) | |
| 7 | syl133anc.7 | . . 3 ⊢ (𝜑 → 𝜎) | |
| 8 | 5, 6, 7 | 3jca 1129 | . 2 ⊢ (𝜑 → (𝜂 ∧ 𝜁 ∧ 𝜎)) |
| 9 | syl133anc.8 | . 2 ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃 ∧ 𝜏) ∧ (𝜂 ∧ 𝜁 ∧ 𝜎)) → 𝜌) | |
| 10 | 1, 2, 3, 4, 8, 9 | syl131anc 1385 | 1 ⊢ (𝜑 → 𝜌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1087 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
| This theorem is referenced by: syl233anc 1401 mdetuni0 22627 frgrwopreg 30342 cgrtr4d 35986 cgrtrand 35994 cgrtr3and 35996 cgrcoml 35997 cgrextendand 36010 segconeu 36012 btwnouttr2 36023 cgr3tr4 36053 cgrxfr 36056 btwnxfr 36057 lineext 36077 brofs2 36078 brifs2 36079 fscgr 36081 btwnconn1lem2 36089 btwnconn1lem4 36091 btwnconn1lem8 36095 btwnconn1lem11 36098 brsegle2 36110 seglecgr12im 36111 segletr 36115 outsidele 36133 dalem13 39678 2llnma1b 39788 cdlemblem 39795 cdlemb 39796 lhpexle3 40014 lhpat 40045 4atex2-0bOLDN 40081 cdlemd4 40203 cdleme14 40275 cdleme19b 40306 cdleme20f 40316 cdleme20j 40320 cdleme20k 40321 cdleme20l2 40323 cdleme20 40326 cdleme22a 40342 cdleme22e 40346 cdleme26e 40361 cdleme28 40375 cdleme38n 40466 cdleme41sn4aw 40477 cdleme41snaw 40478 cdlemg6c 40622 cdlemg6 40625 cdlemg8c 40631 cdlemg9 40636 cdlemg10a 40642 cdlemg12c 40647 cdlemg12d 40648 cdlemg18d 40683 cdlemg18 40684 cdlemg20 40687 cdlemg21 40688 cdlemg22 40689 cdlemg28a 40695 cdlemg33b0 40703 cdlemg28b 40705 cdlemg33a 40708 cdlemg33 40713 cdlemg34 40714 cdlemg36 40716 cdlemg38 40717 cdlemg46 40737 cdlemk6 40839 cdlemki 40843 cdlemksv2 40849 cdlemk11 40851 cdlemk6u 40864 cdleml4N 40981 cdlemn11pre 41212 |
| Copyright terms: Public domain | W3C validator |