| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl133anc | Structured version Visualization version GIF version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| syl3anc.1 | ⊢ (𝜑 → 𝜓) |
| syl3anc.2 | ⊢ (𝜑 → 𝜒) |
| syl3anc.3 | ⊢ (𝜑 → 𝜃) |
| syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
| syl23anc.5 | ⊢ (𝜑 → 𝜂) |
| syl33anc.6 | ⊢ (𝜑 → 𝜁) |
| syl133anc.7 | ⊢ (𝜑 → 𝜎) |
| syl133anc.8 | ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃 ∧ 𝜏) ∧ (𝜂 ∧ 𝜁 ∧ 𝜎)) → 𝜌) |
| Ref | Expression |
|---|---|
| syl133anc | ⊢ (𝜑 → 𝜌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3anc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | syl3anc.2 | . 2 ⊢ (𝜑 → 𝜒) | |
| 3 | syl3anc.3 | . 2 ⊢ (𝜑 → 𝜃) | |
| 4 | syl3Xanc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
| 5 | syl23anc.5 | . . 3 ⊢ (𝜑 → 𝜂) | |
| 6 | syl33anc.6 | . . 3 ⊢ (𝜑 → 𝜁) | |
| 7 | syl133anc.7 | . . 3 ⊢ (𝜑 → 𝜎) | |
| 8 | 5, 6, 7 | 3jca 1128 | . 2 ⊢ (𝜑 → (𝜂 ∧ 𝜁 ∧ 𝜎)) |
| 9 | syl133anc.8 | . 2 ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃 ∧ 𝜏) ∧ (𝜂 ∧ 𝜁 ∧ 𝜎)) → 𝜌) | |
| 10 | 1, 2, 3, 4, 8, 9 | syl131anc 1385 | 1 ⊢ (𝜑 → 𝜌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: syl233anc 1401 mdetuni0 22524 frgrwopreg 30285 cgrtr4d 35961 cgrtrand 35969 cgrtr3and 35971 cgrcoml 35972 cgrextendand 35985 segconeu 35987 btwnouttr2 35998 cgr3tr4 36028 cgrxfr 36031 btwnxfr 36032 lineext 36052 brofs2 36053 brifs2 36054 fscgr 36056 btwnconn1lem2 36064 btwnconn1lem4 36066 btwnconn1lem8 36070 btwnconn1lem11 36073 brsegle2 36085 seglecgr12im 36086 segletr 36090 outsidele 36108 dalem13 39658 2llnma1b 39768 cdlemblem 39775 cdlemb 39776 lhpexle3 39994 lhpat 40025 4atex2-0bOLDN 40061 cdlemd4 40183 cdleme14 40255 cdleme19b 40286 cdleme20f 40296 cdleme20j 40300 cdleme20k 40301 cdleme20l2 40303 cdleme20 40306 cdleme22a 40322 cdleme22e 40326 cdleme26e 40341 cdleme28 40355 cdleme38n 40446 cdleme41sn4aw 40457 cdleme41snaw 40458 cdlemg6c 40602 cdlemg6 40605 cdlemg8c 40611 cdlemg9 40616 cdlemg10a 40622 cdlemg12c 40627 cdlemg12d 40628 cdlemg18d 40663 cdlemg18 40664 cdlemg20 40667 cdlemg21 40668 cdlemg22 40669 cdlemg28a 40675 cdlemg33b0 40683 cdlemg28b 40685 cdlemg33a 40688 cdlemg33 40693 cdlemg34 40694 cdlemg36 40696 cdlemg38 40697 cdlemg46 40717 cdlemk6 40819 cdlemki 40823 cdlemksv2 40829 cdlemk11 40831 cdlemk6u 40844 cdleml4N 40961 cdlemn11pre 41192 |
| Copyright terms: Public domain | W3C validator |