![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl133anc | Structured version Visualization version GIF version |
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
Ref | Expression |
---|---|
syl3anc.1 | ⊢ (𝜑 → 𝜓) |
syl3anc.2 | ⊢ (𝜑 → 𝜒) |
syl3anc.3 | ⊢ (𝜑 → 𝜃) |
syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
syl23anc.5 | ⊢ (𝜑 → 𝜂) |
syl33anc.6 | ⊢ (𝜑 → 𝜁) |
syl133anc.7 | ⊢ (𝜑 → 𝜎) |
syl133anc.8 | ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃 ∧ 𝜏) ∧ (𝜂 ∧ 𝜁 ∧ 𝜎)) → 𝜌) |
Ref | Expression |
---|---|
syl133anc | ⊢ (𝜑 → 𝜌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3anc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | syl3anc.2 | . 2 ⊢ (𝜑 → 𝜒) | |
3 | syl3anc.3 | . 2 ⊢ (𝜑 → 𝜃) | |
4 | syl3Xanc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
5 | syl23anc.5 | . . 3 ⊢ (𝜑 → 𝜂) | |
6 | syl33anc.6 | . . 3 ⊢ (𝜑 → 𝜁) | |
7 | syl133anc.7 | . . 3 ⊢ (𝜑 → 𝜎) | |
8 | 5, 6, 7 | 3jca 1162 | . 2 ⊢ (𝜑 → (𝜂 ∧ 𝜁 ∧ 𝜎)) |
9 | syl133anc.8 | . 2 ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃 ∧ 𝜏) ∧ (𝜂 ∧ 𝜁 ∧ 𝜎)) → 𝜌) | |
10 | 1, 2, 3, 4, 8, 9 | syl131anc 1506 | 1 ⊢ (𝜑 → 𝜌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1111 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-an 387 df-3an 1113 |
This theorem is referenced by: syl233anc 1522 mdetuni0 20795 frgrwopreg 27693 cgrtr4d 32620 cgrtrand 32628 cgrtr3and 32630 cgrcoml 32631 cgrextendand 32644 segconeu 32646 btwnouttr2 32657 cgr3tr4 32687 cgrxfr 32690 btwnxfr 32691 lineext 32711 brofs2 32712 brifs2 32713 fscgr 32715 btwnconn1lem2 32723 btwnconn1lem4 32725 btwnconn1lem8 32729 btwnconn1lem11 32732 brsegle2 32744 seglecgr12im 32745 segletr 32749 outsidele 32767 dalem13 35744 2llnma1b 35854 cdlemblem 35861 cdlemb 35862 lhpexle3 36080 lhpat 36111 4atex2-0bOLDN 36147 cdlemd4 36269 cdleme14 36341 cdleme19b 36372 cdleme20f 36382 cdleme20j 36386 cdleme20k 36387 cdleme20l2 36389 cdleme20 36392 cdleme22a 36408 cdleme22e 36412 cdleme26e 36427 cdleme28 36441 cdleme38n 36532 cdleme41sn4aw 36543 cdleme41snaw 36544 cdlemg6c 36688 cdlemg6 36691 cdlemg8c 36697 cdlemg9 36702 cdlemg10a 36708 cdlemg12c 36713 cdlemg12d 36714 cdlemg18d 36749 cdlemg18 36750 cdlemg20 36753 cdlemg21 36754 cdlemg22 36755 cdlemg28a 36761 cdlemg33b0 36769 cdlemg28b 36771 cdlemg33a 36774 cdlemg33 36779 cdlemg34 36780 cdlemg36 36782 cdlemg38 36783 cdlemg46 36803 cdlemk6 36905 cdlemki 36909 cdlemksv2 36915 cdlemk11 36917 cdlemk6u 36930 cdleml4N 37047 cdlemn11pre 37278 |
Copyright terms: Public domain | W3C validator |