| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl133anc | Structured version Visualization version GIF version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| syl3anc.1 | ⊢ (𝜑 → 𝜓) |
| syl3anc.2 | ⊢ (𝜑 → 𝜒) |
| syl3anc.3 | ⊢ (𝜑 → 𝜃) |
| syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
| syl23anc.5 | ⊢ (𝜑 → 𝜂) |
| syl33anc.6 | ⊢ (𝜑 → 𝜁) |
| syl133anc.7 | ⊢ (𝜑 → 𝜎) |
| syl133anc.8 | ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃 ∧ 𝜏) ∧ (𝜂 ∧ 𝜁 ∧ 𝜎)) → 𝜌) |
| Ref | Expression |
|---|---|
| syl133anc | ⊢ (𝜑 → 𝜌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3anc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | syl3anc.2 | . 2 ⊢ (𝜑 → 𝜒) | |
| 3 | syl3anc.3 | . 2 ⊢ (𝜑 → 𝜃) | |
| 4 | syl3Xanc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
| 5 | syl23anc.5 | . . 3 ⊢ (𝜑 → 𝜂) | |
| 6 | syl33anc.6 | . . 3 ⊢ (𝜑 → 𝜁) | |
| 7 | syl133anc.7 | . . 3 ⊢ (𝜑 → 𝜎) | |
| 8 | 5, 6, 7 | 3jca 1128 | . 2 ⊢ (𝜑 → (𝜂 ∧ 𝜁 ∧ 𝜎)) |
| 9 | syl133anc.8 | . 2 ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃 ∧ 𝜏) ∧ (𝜂 ∧ 𝜁 ∧ 𝜎)) → 𝜌) | |
| 10 | 1, 2, 3, 4, 8, 9 | syl131anc 1385 | 1 ⊢ (𝜑 → 𝜌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: syl233anc 1401 mdetuni0 22539 frgrwopreg 30307 cgrtr4d 36052 cgrtrand 36060 cgrtr3and 36062 cgrcoml 36063 cgrextendand 36076 segconeu 36078 btwnouttr2 36089 cgr3tr4 36119 cgrxfr 36122 btwnxfr 36123 lineext 36143 brofs2 36144 brifs2 36145 fscgr 36147 btwnconn1lem2 36155 btwnconn1lem4 36157 btwnconn1lem8 36161 btwnconn1lem11 36164 brsegle2 36176 seglecgr12im 36177 segletr 36181 outsidele 36199 dalem13 39798 2llnma1b 39908 cdlemblem 39915 cdlemb 39916 lhpexle3 40134 lhpat 40165 4atex2-0bOLDN 40201 cdlemd4 40323 cdleme14 40395 cdleme19b 40426 cdleme20f 40436 cdleme20j 40440 cdleme20k 40441 cdleme20l2 40443 cdleme20 40446 cdleme22a 40462 cdleme22e 40466 cdleme26e 40481 cdleme28 40495 cdleme38n 40586 cdleme41sn4aw 40597 cdleme41snaw 40598 cdlemg6c 40742 cdlemg6 40745 cdlemg8c 40751 cdlemg9 40756 cdlemg10a 40762 cdlemg12c 40767 cdlemg12d 40768 cdlemg18d 40803 cdlemg18 40804 cdlemg20 40807 cdlemg21 40808 cdlemg22 40809 cdlemg28a 40815 cdlemg33b0 40823 cdlemg28b 40825 cdlemg33a 40828 cdlemg33 40833 cdlemg34 40834 cdlemg36 40836 cdlemg38 40837 cdlemg46 40857 cdlemk6 40959 cdlemki 40963 cdlemksv2 40969 cdlemk11 40971 cdlemk6u 40984 cdleml4N 41101 cdlemn11pre 41332 |
| Copyright terms: Public domain | W3C validator |