Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > syl311anc | Structured version Visualization version GIF version |
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
Ref | Expression |
---|---|
syl3anc.1 | ⊢ (𝜑 → 𝜓) |
syl3anc.2 | ⊢ (𝜑 → 𝜒) |
syl3anc.3 | ⊢ (𝜑 → 𝜃) |
syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
syl23anc.5 | ⊢ (𝜑 → 𝜂) |
syl311anc.6 | ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜁) |
Ref | Expression |
---|---|
syl311anc | ⊢ (𝜑 → 𝜁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3anc.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | syl3anc.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
3 | syl3anc.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
4 | 1, 2, 3 | 3jca 1126 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
5 | syl3Xanc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
6 | syl23anc.5 | . 2 ⊢ (𝜑 → 𝜂) | |
7 | syl311anc.6 | . 2 ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜁) | |
8 | 4, 5, 6, 7 | syl3anc 1369 | 1 ⊢ (𝜑 → 𝜁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: syl312anc 1389 syl321anc 1390 syl313anc 1392 syl331anc 1393 fprlem1 8100 pythagtrip 16516 nmolb2d 23863 nmoleub 23876 clwwisshclwwslem 28357 numclwwlk1lem2foa 28697 cvlcvr1 37332 4atlem12b 37604 dalawlem10 37873 dalawlem13 37876 dalawlem15 37878 osumcllem11N 37959 lhp2atne 38027 lhp2at0ne 38029 cdlemd 38200 ltrneq3 38201 cdleme7d 38239 cdlemeg49le 38504 cdleme 38553 cdlemg1a 38563 ltrniotavalbN 38577 cdlemg44 38726 cdlemk19 38862 cdlemk27-3 38900 cdlemk33N 38902 cdlemk34 38903 cdlemk49 38944 cdlemk53a 38948 cdlemk19u 38963 cdlemk56w 38966 dia2dimlem4 39060 dih1dimatlem0 39321 itsclc0yqe 46059 itsclinecirc0 46071 itsclinecirc0b 46072 inlinecirc02plem 46084 |
Copyright terms: Public domain | W3C validator |