![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl311anc | Structured version Visualization version GIF version |
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
Ref | Expression |
---|---|
syl3anc.1 | ⊢ (𝜑 → 𝜓) |
syl3anc.2 | ⊢ (𝜑 → 𝜒) |
syl3anc.3 | ⊢ (𝜑 → 𝜃) |
syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
syl23anc.5 | ⊢ (𝜑 → 𝜂) |
syl311anc.6 | ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜁) |
Ref | Expression |
---|---|
syl311anc | ⊢ (𝜑 → 𝜁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3anc.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | syl3anc.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
3 | syl3anc.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
4 | 1, 2, 3 | 3jca 1127 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
5 | syl3Xanc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
6 | syl23anc.5 | . 2 ⊢ (𝜑 → 𝜂) | |
7 | syl311anc.6 | . 2 ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜁) | |
8 | 4, 5, 6, 7 | syl3anc 1370 | 1 ⊢ (𝜑 → 𝜁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
This theorem is referenced by: syl312anc 1390 syl321anc 1391 syl313anc 1393 syl331anc 1394 fprlem1 8324 pythagtrip 16868 nmolb2d 24755 nmoleub 24768 clwwisshclwwslem 30043 numclwwlk1lem2foa 30383 cvlcvr1 39321 4atlem12b 39594 dalawlem10 39863 dalawlem13 39866 dalawlem15 39868 osumcllem11N 39949 lhp2atne 40017 lhp2at0ne 40019 cdlemd 40190 ltrneq3 40191 cdleme7d 40229 cdlemeg49le 40494 cdleme 40543 cdlemg1a 40553 ltrniotavalbN 40567 cdlemg44 40716 cdlemk19 40852 cdlemk27-3 40890 cdlemk33N 40892 cdlemk34 40893 cdlemk49 40934 cdlemk53a 40938 cdlemk19u 40953 cdlemk56w 40956 dia2dimlem4 41050 dih1dimatlem0 41311 itsclc0yqe 48611 itsclinecirc0 48623 itsclinecirc0b 48624 inlinecirc02plem 48636 |
Copyright terms: Public domain | W3C validator |