| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl311anc | Structured version Visualization version GIF version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| syl3anc.1 | ⊢ (𝜑 → 𝜓) |
| syl3anc.2 | ⊢ (𝜑 → 𝜒) |
| syl3anc.3 | ⊢ (𝜑 → 𝜃) |
| syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
| syl23anc.5 | ⊢ (𝜑 → 𝜂) |
| syl311anc.6 | ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜁) |
| Ref | Expression |
|---|---|
| syl311anc | ⊢ (𝜑 → 𝜁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3anc.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | syl3anc.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 3 | syl3anc.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 4 | 1, 2, 3 | 3jca 1128 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| 5 | syl3Xanc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
| 6 | syl23anc.5 | . 2 ⊢ (𝜑 → 𝜂) | |
| 7 | syl311anc.6 | . 2 ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜁) | |
| 8 | 4, 5, 6, 7 | syl3anc 1373 | 1 ⊢ (𝜑 → 𝜁) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: syl312anc 1393 syl321anc 1394 syl313anc 1396 syl331anc 1397 fprlem1 8240 pythagtrip 16764 nmolb2d 24622 nmoleub 24635 clwwisshclwwslem 29976 numclwwlk1lem2foa 30316 cvlcvr1 39320 4atlem12b 39593 dalawlem10 39862 dalawlem13 39865 dalawlem15 39867 osumcllem11N 39948 lhp2atne 40016 lhp2at0ne 40018 cdlemd 40189 ltrneq3 40190 cdleme7d 40228 cdlemeg49le 40493 cdleme 40542 cdlemg1a 40552 ltrniotavalbN 40566 cdlemg44 40715 cdlemk19 40851 cdlemk27-3 40889 cdlemk33N 40891 cdlemk34 40892 cdlemk49 40933 cdlemk53a 40937 cdlemk19u 40952 cdlemk56w 40955 dia2dimlem4 41049 dih1dimatlem0 41310 itsclc0yqe 48750 itsclinecirc0 48762 itsclinecirc0b 48763 inlinecirc02plem 48775 |
| Copyright terms: Public domain | W3C validator |