| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl311anc | Structured version Visualization version GIF version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| syl3anc.1 | ⊢ (𝜑 → 𝜓) |
| syl3anc.2 | ⊢ (𝜑 → 𝜒) |
| syl3anc.3 | ⊢ (𝜑 → 𝜃) |
| syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
| syl23anc.5 | ⊢ (𝜑 → 𝜂) |
| syl311anc.6 | ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜁) |
| Ref | Expression |
|---|---|
| syl311anc | ⊢ (𝜑 → 𝜁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3anc.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | syl3anc.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 3 | syl3anc.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 4 | 1, 2, 3 | 3jca 1128 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| 5 | syl3Xanc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
| 6 | syl23anc.5 | . 2 ⊢ (𝜑 → 𝜂) | |
| 7 | syl311anc.6 | . 2 ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜁) | |
| 8 | 4, 5, 6, 7 | syl3anc 1373 | 1 ⊢ (𝜑 → 𝜁) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: syl312anc 1393 syl321anc 1394 syl313anc 1396 syl331anc 1397 fprlem1 8279 pythagtrip 16805 nmolb2d 24606 nmoleub 24619 clwwisshclwwslem 29943 numclwwlk1lem2foa 30283 cvlcvr1 39332 4atlem12b 39605 dalawlem10 39874 dalawlem13 39877 dalawlem15 39879 osumcllem11N 39960 lhp2atne 40028 lhp2at0ne 40030 cdlemd 40201 ltrneq3 40202 cdleme7d 40240 cdlemeg49le 40505 cdleme 40554 cdlemg1a 40564 ltrniotavalbN 40578 cdlemg44 40727 cdlemk19 40863 cdlemk27-3 40901 cdlemk33N 40903 cdlemk34 40904 cdlemk49 40945 cdlemk53a 40949 cdlemk19u 40964 cdlemk56w 40967 dia2dimlem4 41061 dih1dimatlem0 41322 itsclc0yqe 48750 itsclinecirc0 48762 itsclinecirc0b 48763 inlinecirc02plem 48775 |
| Copyright terms: Public domain | W3C validator |