![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl311anc | Structured version Visualization version GIF version |
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
Ref | Expression |
---|---|
syl3anc.1 | ⊢ (𝜑 → 𝜓) |
syl3anc.2 | ⊢ (𝜑 → 𝜒) |
syl3anc.3 | ⊢ (𝜑 → 𝜃) |
syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
syl23anc.5 | ⊢ (𝜑 → 𝜂) |
syl311anc.6 | ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜁) |
Ref | Expression |
---|---|
syl311anc | ⊢ (𝜑 → 𝜁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3anc.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | syl3anc.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
3 | syl3anc.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
4 | 1, 2, 3 | 3jca 1128 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
5 | syl3Xanc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
6 | syl23anc.5 | . 2 ⊢ (𝜑 → 𝜂) | |
7 | syl311anc.6 | . 2 ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜁) | |
8 | 4, 5, 6, 7 | syl3anc 1371 | 1 ⊢ (𝜑 → 𝜁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: syl312anc 1391 syl321anc 1392 syl313anc 1394 syl331anc 1395 fprlem1 8341 pythagtrip 16881 nmolb2d 24760 nmoleub 24773 clwwisshclwwslem 30046 numclwwlk1lem2foa 30386 cvlcvr1 39295 4atlem12b 39568 dalawlem10 39837 dalawlem13 39840 dalawlem15 39842 osumcllem11N 39923 lhp2atne 39991 lhp2at0ne 39993 cdlemd 40164 ltrneq3 40165 cdleme7d 40203 cdlemeg49le 40468 cdleme 40517 cdlemg1a 40527 ltrniotavalbN 40541 cdlemg44 40690 cdlemk19 40826 cdlemk27-3 40864 cdlemk33N 40866 cdlemk34 40867 cdlemk49 40908 cdlemk53a 40912 cdlemk19u 40927 cdlemk56w 40930 dia2dimlem4 41024 dih1dimatlem0 41285 itsclc0yqe 48495 itsclinecirc0 48507 itsclinecirc0b 48508 inlinecirc02plem 48520 |
Copyright terms: Public domain | W3C validator |