Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > syl311anc | Structured version Visualization version GIF version |
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
Ref | Expression |
---|---|
syl3anc.1 | ⊢ (𝜑 → 𝜓) |
syl3anc.2 | ⊢ (𝜑 → 𝜒) |
syl3anc.3 | ⊢ (𝜑 → 𝜃) |
syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
syl23anc.5 | ⊢ (𝜑 → 𝜂) |
syl311anc.6 | ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜁) |
Ref | Expression |
---|---|
syl311anc | ⊢ (𝜑 → 𝜁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3anc.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | syl3anc.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
3 | syl3anc.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
4 | 1, 2, 3 | 3jca 1128 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
5 | syl3Xanc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
6 | syl23anc.5 | . 2 ⊢ (𝜑 → 𝜂) | |
7 | syl311anc.6 | . 2 ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜁) | |
8 | 4, 5, 6, 7 | syl3anc 1371 | 1 ⊢ (𝜑 → 𝜁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-3an 1089 |
This theorem is referenced by: syl312anc 1391 syl321anc 1392 syl313anc 1394 syl331anc 1395 fprlem1 8147 pythagtrip 16580 nmolb2d 23927 nmoleub 23940 clwwisshclwwslem 28423 numclwwlk1lem2foa 28763 cvlcvr1 37395 4atlem12b 37667 dalawlem10 37936 dalawlem13 37939 dalawlem15 37941 osumcllem11N 38022 lhp2atne 38090 lhp2at0ne 38092 cdlemd 38263 ltrneq3 38264 cdleme7d 38302 cdlemeg49le 38567 cdleme 38616 cdlemg1a 38626 ltrniotavalbN 38640 cdlemg44 38789 cdlemk19 38925 cdlemk27-3 38963 cdlemk33N 38965 cdlemk34 38966 cdlemk49 39007 cdlemk53a 39011 cdlemk19u 39026 cdlemk56w 39029 dia2dimlem4 39123 dih1dimatlem0 39384 itsclc0yqe 46165 itsclinecirc0 46177 itsclinecirc0b 46178 inlinecirc02plem 46190 |
Copyright terms: Public domain | W3C validator |