| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl311anc | Structured version Visualization version GIF version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| syl3anc.1 | ⊢ (𝜑 → 𝜓) |
| syl3anc.2 | ⊢ (𝜑 → 𝜒) |
| syl3anc.3 | ⊢ (𝜑 → 𝜃) |
| syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
| syl23anc.5 | ⊢ (𝜑 → 𝜂) |
| syl311anc.6 | ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜁) |
| Ref | Expression |
|---|---|
| syl311anc | ⊢ (𝜑 → 𝜁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3anc.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | syl3anc.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 3 | syl3anc.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 4 | 1, 2, 3 | 3jca 1128 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| 5 | syl3Xanc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
| 6 | syl23anc.5 | . 2 ⊢ (𝜑 → 𝜂) | |
| 7 | syl311anc.6 | . 2 ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜁) | |
| 8 | 4, 5, 6, 7 | syl3anc 1373 | 1 ⊢ (𝜑 → 𝜁) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: syl312anc 1393 syl321anc 1394 syl313anc 1396 syl331anc 1397 fprlem1 8299 pythagtrip 16854 nmolb2d 24657 nmoleub 24670 clwwisshclwwslem 29995 numclwwlk1lem2foa 30335 cvlcvr1 39357 4atlem12b 39630 dalawlem10 39899 dalawlem13 39902 dalawlem15 39904 osumcllem11N 39985 lhp2atne 40053 lhp2at0ne 40055 cdlemd 40226 ltrneq3 40227 cdleme7d 40265 cdlemeg49le 40530 cdleme 40579 cdlemg1a 40589 ltrniotavalbN 40603 cdlemg44 40752 cdlemk19 40888 cdlemk27-3 40926 cdlemk33N 40928 cdlemk34 40929 cdlemk49 40970 cdlemk53a 40974 cdlemk19u 40989 cdlemk56w 40992 dia2dimlem4 41086 dih1dimatlem0 41347 itsclc0yqe 48741 itsclinecirc0 48753 itsclinecirc0b 48754 inlinecirc02plem 48766 |
| Copyright terms: Public domain | W3C validator |