| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl311anc | Structured version Visualization version GIF version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| syl3anc.1 | ⊢ (𝜑 → 𝜓) |
| syl3anc.2 | ⊢ (𝜑 → 𝜒) |
| syl3anc.3 | ⊢ (𝜑 → 𝜃) |
| syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
| syl23anc.5 | ⊢ (𝜑 → 𝜂) |
| syl311anc.6 | ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜁) |
| Ref | Expression |
|---|---|
| syl311anc | ⊢ (𝜑 → 𝜁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3anc.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | syl3anc.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 3 | syl3anc.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 4 | 1, 2, 3 | 3jca 1128 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| 5 | syl3Xanc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
| 6 | syl23anc.5 | . 2 ⊢ (𝜑 → 𝜂) | |
| 7 | syl311anc.6 | . 2 ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ 𝜏 ∧ 𝜂) → 𝜁) | |
| 8 | 4, 5, 6, 7 | syl3anc 1373 | 1 ⊢ (𝜑 → 𝜁) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: syl312anc 1393 syl321anc 1394 syl313anc 1396 syl331anc 1397 fprlem1 8239 pythagtrip 16753 nmolb2d 24653 nmoleub 24666 clwwisshclwwslem 30015 numclwwlk1lem2foa 30355 cvlcvr1 39511 4atlem12b 39783 dalawlem10 40052 dalawlem13 40055 dalawlem15 40057 osumcllem11N 40138 lhp2atne 40206 lhp2at0ne 40208 cdlemd 40379 ltrneq3 40380 cdleme7d 40418 cdlemeg49le 40683 cdleme 40732 cdlemg1a 40742 ltrniotavalbN 40756 cdlemg44 40905 cdlemk19 41041 cdlemk27-3 41079 cdlemk33N 41081 cdlemk34 41082 cdlemk49 41123 cdlemk53a 41127 cdlemk19u 41142 cdlemk56w 41145 dia2dimlem4 41239 dih1dimatlem0 41500 itsclc0yqe 48923 itsclinecirc0 48935 itsclinecirc0b 48936 inlinecirc02plem 48948 |
| Copyright terms: Public domain | W3C validator |