![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > symdifeq2 | Structured version Visualization version GIF version |
Description: Equality theorem for symmetric difference. (Contributed by Scott Fenton, 24-Apr-2012.) |
Ref | Expression |
---|---|
symdifeq2 | ⊢ (𝐴 = 𝐵 → (𝐶 △ 𝐴) = (𝐶 △ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | symdifeq1 4274 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 △ 𝐶) = (𝐵 △ 𝐶)) | |
2 | symdifcom 4273 | . 2 ⊢ (𝐶 △ 𝐴) = (𝐴 △ 𝐶) | |
3 | symdifcom 4273 | . 2 ⊢ (𝐶 △ 𝐵) = (𝐵 △ 𝐶) | |
4 | 1, 2, 3 | 3eqtr4g 2805 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 △ 𝐴) = (𝐶 △ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 △ csymdif 4271 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-symdif 4272 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |