MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symdifeq2 Structured version   Visualization version   GIF version

Theorem symdifeq2 4179
Description: Equality theorem for symmetric difference. (Contributed by Scott Fenton, 24-Apr-2012.)
Assertion
Ref Expression
symdifeq2 (𝐴 = 𝐵 → (𝐶𝐴) = (𝐶𝐵))

Proof of Theorem symdifeq2
StepHypRef Expression
1 symdifeq1 4178 . 2 (𝐴 = 𝐵 → (𝐴𝐶) = (𝐵𝐶))
2 symdifcom 4177 . 2 (𝐶𝐴) = (𝐴𝐶)
3 symdifcom 4177 . 2 (𝐶𝐵) = (𝐵𝐶)
41, 2, 33eqtr4g 2803 1 (𝐴 = 𝐵 → (𝐶𝐴) = (𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  csymdif 4175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-symdif 4176
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator