![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > symdifeq2 | Structured version Visualization version GIF version |
Description: Equality theorem for symmetric difference. (Contributed by Scott Fenton, 24-Apr-2012.) |
Ref | Expression |
---|---|
symdifeq2 | ⊢ (𝐴 = 𝐵 → (𝐶 △ 𝐴) = (𝐶 △ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | symdifeq1 4239 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 △ 𝐶) = (𝐵 △ 𝐶)) | |
2 | symdifcom 4238 | . 2 ⊢ (𝐶 △ 𝐴) = (𝐴 △ 𝐶) | |
3 | symdifcom 4238 | . 2 ⊢ (𝐶 △ 𝐵) = (𝐵 △ 𝐶) | |
4 | 1, 2, 3 | 3eqtr4g 2791 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 △ 𝐴) = (𝐶 △ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 △ csymdif 4236 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-symdif 4237 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |