| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > symdifeq2 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for symmetric difference. (Contributed by Scott Fenton, 24-Apr-2012.) |
| Ref | Expression |
|---|---|
| symdifeq2 | ⊢ (𝐴 = 𝐵 → (𝐶 △ 𝐴) = (𝐶 △ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | symdifeq1 4202 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 △ 𝐶) = (𝐵 △ 𝐶)) | |
| 2 | symdifcom 4201 | . 2 ⊢ (𝐶 △ 𝐴) = (𝐴 △ 𝐶) | |
| 3 | symdifcom 4201 | . 2 ⊢ (𝐶 △ 𝐵) = (𝐵 △ 𝐶) | |
| 4 | 1, 2, 3 | 3eqtr4g 2791 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 △ 𝐴) = (𝐶 △ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 △ csymdif 4199 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-symdif 4200 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |