MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symdifeq2 Structured version   Visualization version   GIF version

Theorem symdifeq2 4236
Description: Equality theorem for symmetric difference. (Contributed by Scott Fenton, 24-Apr-2012.)
Assertion
Ref Expression
symdifeq2 (𝐴 = 𝐵 → (𝐶𝐴) = (𝐶𝐵))

Proof of Theorem symdifeq2
StepHypRef Expression
1 symdifeq1 4235 . 2 (𝐴 = 𝐵 → (𝐴𝐶) = (𝐵𝐶))
2 symdifcom 4234 . 2 (𝐶𝐴) = (𝐴𝐶)
3 symdifcom 4234 . 2 (𝐶𝐵) = (𝐵𝐶)
41, 2, 33eqtr4g 2796 1 (𝐴 = 𝐵 → (𝐶𝐴) = (𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  csymdif 4232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-symdif 4233
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator