MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trv Structured version   Visualization version   GIF version

Theorem trv 5248
Description: The universe is transitive. (Contributed by NM, 14-Sep-2003.)
Assertion
Ref Expression
trv Tr V

Proof of Theorem trv
StepHypRef Expression
1 ssv 3988 . 2 V ⊆ V
2 df-tr 5235 . 2 (Tr V ↔ V ⊆ V)
31, 2mpbir 231 1 Tr V
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3464  wss 3931   cuni 4888  Tr wtr 5234
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-v 3466  df-ss 3948  df-tr 5235
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator