MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trv Structured version   Visualization version   GIF version

Theorem trv 5279
Description: The universe is transitive. (Contributed by NM, 14-Sep-2003.)
Assertion
Ref Expression
trv Tr V

Proof of Theorem trv
StepHypRef Expression
1 ssv 4020 . 2 V ⊆ V
2 df-tr 5266 . 2 (Tr V ↔ V ⊆ V)
31, 2mpbir 231 1 Tr V
Colors of variables: wff setvar class
Syntax hints:  Vcvv 3478  wss 3963   cuni 4912  Tr wtr 5265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-v 3480  df-ss 3980  df-tr 5266
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator