![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > triun | Structured version Visualization version GIF version |
Description: An indexed union of a class of transitive sets is transitive. (Contributed by Mario Carneiro, 16-Nov-2014.) |
Ref | Expression |
---|---|
triun | ⊢ (∀𝑥 ∈ 𝐴 Tr 𝐵 → Tr ∪ 𝑥 ∈ 𝐴 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eliun 4962 | . . . 4 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) | |
2 | r19.29 3114 | . . . . 5 ⊢ ((∀𝑥 ∈ 𝐴 Tr 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) → ∃𝑥 ∈ 𝐴 (Tr 𝐵 ∧ 𝑦 ∈ 𝐵)) | |
3 | nfcv 2904 | . . . . . . 7 ⊢ Ⅎ𝑥𝑦 | |
4 | nfiu1 4992 | . . . . . . 7 ⊢ Ⅎ𝑥∪ 𝑥 ∈ 𝐴 𝐵 | |
5 | 3, 4 | nfss 3940 | . . . . . 6 ⊢ Ⅎ𝑥 𝑦 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 |
6 | trss 5237 | . . . . . . . 8 ⊢ (Tr 𝐵 → (𝑦 ∈ 𝐵 → 𝑦 ⊆ 𝐵)) | |
7 | 6 | imp 408 | . . . . . . 7 ⊢ ((Tr 𝐵 ∧ 𝑦 ∈ 𝐵) → 𝑦 ⊆ 𝐵) |
8 | ssiun2 5011 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐴 → 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) | |
9 | sstr2 3955 | . . . . . . 7 ⊢ (𝑦 ⊆ 𝐵 → (𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 → 𝑦 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵)) | |
10 | 7, 8, 9 | syl2imc 41 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 → ((Tr 𝐵 ∧ 𝑦 ∈ 𝐵) → 𝑦 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵)) |
11 | 5, 10 | rexlimi 3241 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐴 (Tr 𝐵 ∧ 𝑦 ∈ 𝐵) → 𝑦 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) |
12 | 2, 11 | syl 17 | . . . 4 ⊢ ((∀𝑥 ∈ 𝐴 Tr 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) → 𝑦 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) |
13 | 1, 12 | sylan2b 595 | . . 3 ⊢ ((∀𝑥 ∈ 𝐴 Tr 𝐵 ∧ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) → 𝑦 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) |
14 | 13 | ralrimiva 3140 | . 2 ⊢ (∀𝑥 ∈ 𝐴 Tr 𝐵 → ∀𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵𝑦 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) |
15 | dftr3 5232 | . 2 ⊢ (Tr ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵𝑦 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) | |
16 | 14, 15 | sylibr 233 | 1 ⊢ (∀𝑥 ∈ 𝐴 Tr 𝐵 → Tr ∪ 𝑥 ∈ 𝐴 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∈ wcel 2107 ∀wral 3061 ∃wrex 3070 ⊆ wss 3914 ∪ ciun 4958 Tr wtr 5226 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3062 df-rex 3071 df-v 3449 df-in 3921 df-ss 3931 df-uni 4870 df-iun 4960 df-tr 5227 |
This theorem is referenced by: truni 5242 r1tr 9720 r1elssi 9749 iunord 47211 |
Copyright terms: Public domain | W3C validator |