MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  triun Structured version   Visualization version   GIF version

Theorem triun 5214
Description: An indexed union of a class of transitive sets is transitive. (Contributed by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
triun (∀𝑥𝐴 Tr 𝐵 → Tr 𝑥𝐴 𝐵)

Proof of Theorem triun
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eliun 4945 . . . 4 (𝑦 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴 𝑦𝐵)
2 r19.29 3096 . . . . 5 ((∀𝑥𝐴 Tr 𝐵 ∧ ∃𝑥𝐴 𝑦𝐵) → ∃𝑥𝐴 (Tr 𝐵𝑦𝐵))
3 nfcv 2895 . . . . . . 7 𝑥𝑦
4 nfiu1 4977 . . . . . . 7 𝑥 𝑥𝐴 𝐵
53, 4nfss 3923 . . . . . 6 𝑥 𝑦 𝑥𝐴 𝐵
6 trss 5210 . . . . . . . 8 (Tr 𝐵 → (𝑦𝐵𝑦𝐵))
76imp 406 . . . . . . 7 ((Tr 𝐵𝑦𝐵) → 𝑦𝐵)
8 ssiun2 4998 . . . . . . 7 (𝑥𝐴𝐵 𝑥𝐴 𝐵)
9 sstr2 3937 . . . . . . 7 (𝑦𝐵 → (𝐵 𝑥𝐴 𝐵𝑦 𝑥𝐴 𝐵))
107, 8, 9syl2imc 41 . . . . . 6 (𝑥𝐴 → ((Tr 𝐵𝑦𝐵) → 𝑦 𝑥𝐴 𝐵))
115, 10rexlimi 3233 . . . . 5 (∃𝑥𝐴 (Tr 𝐵𝑦𝐵) → 𝑦 𝑥𝐴 𝐵)
122, 11syl 17 . . . 4 ((∀𝑥𝐴 Tr 𝐵 ∧ ∃𝑥𝐴 𝑦𝐵) → 𝑦 𝑥𝐴 𝐵)
131, 12sylan2b 594 . . 3 ((∀𝑥𝐴 Tr 𝐵𝑦 𝑥𝐴 𝐵) → 𝑦 𝑥𝐴 𝐵)
1413ralrimiva 3125 . 2 (∀𝑥𝐴 Tr 𝐵 → ∀𝑦 𝑥𝐴 𝐵𝑦 𝑥𝐴 𝐵)
15 dftr3 5205 . 2 (Tr 𝑥𝐴 𝐵 ↔ ∀𝑦 𝑥𝐴 𝐵𝑦 𝑥𝐴 𝐵)
1614, 15sylibr 234 1 (∀𝑥𝐴 Tr 𝐵 → Tr 𝑥𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2113  wral 3048  wrex 3057  wss 3898   ciun 4941  Tr wtr 5200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ral 3049  df-rex 3058  df-v 3439  df-ss 3915  df-uni 4859  df-iun 4943  df-tr 5201
This theorem is referenced by:  truni  5215  r1tr  9676  r1elssi  9705  tz9.1regs  35151  iunord  49801
  Copyright terms: Public domain W3C validator