![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > triun | Structured version Visualization version GIF version |
Description: An indexed union of a class of transitive sets is transitive. (Contributed by Mario Carneiro, 16-Nov-2014.) |
Ref | Expression |
---|---|
triun | ⊢ (∀𝑥 ∈ 𝐴 Tr 𝐵 → Tr ∪ 𝑥 ∈ 𝐴 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eliun 5019 | . . . 4 ⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) | |
2 | r19.29 3120 | . . . . 5 ⊢ ((∀𝑥 ∈ 𝐴 Tr 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) → ∃𝑥 ∈ 𝐴 (Tr 𝐵 ∧ 𝑦 ∈ 𝐵)) | |
3 | nfcv 2908 | . . . . . . 7 ⊢ Ⅎ𝑥𝑦 | |
4 | nfiu1 5050 | . . . . . . 7 ⊢ Ⅎ𝑥∪ 𝑥 ∈ 𝐴 𝐵 | |
5 | 3, 4 | nfss 4001 | . . . . . 6 ⊢ Ⅎ𝑥 𝑦 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 |
6 | trss 5294 | . . . . . . . 8 ⊢ (Tr 𝐵 → (𝑦 ∈ 𝐵 → 𝑦 ⊆ 𝐵)) | |
7 | 6 | imp 406 | . . . . . . 7 ⊢ ((Tr 𝐵 ∧ 𝑦 ∈ 𝐵) → 𝑦 ⊆ 𝐵) |
8 | ssiun2 5070 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐴 → 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) | |
9 | sstr2 4015 | . . . . . . 7 ⊢ (𝑦 ⊆ 𝐵 → (𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 → 𝑦 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵)) | |
10 | 7, 8, 9 | syl2imc 41 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 → ((Tr 𝐵 ∧ 𝑦 ∈ 𝐵) → 𝑦 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵)) |
11 | 5, 10 | rexlimi 3265 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐴 (Tr 𝐵 ∧ 𝑦 ∈ 𝐵) → 𝑦 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) |
12 | 2, 11 | syl 17 | . . . 4 ⊢ ((∀𝑥 ∈ 𝐴 Tr 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) → 𝑦 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) |
13 | 1, 12 | sylan2b 593 | . . 3 ⊢ ((∀𝑥 ∈ 𝐴 Tr 𝐵 ∧ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) → 𝑦 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) |
14 | 13 | ralrimiva 3152 | . 2 ⊢ (∀𝑥 ∈ 𝐴 Tr 𝐵 → ∀𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵𝑦 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) |
15 | dftr3 5289 | . 2 ⊢ (Tr ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵𝑦 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵) | |
16 | 14, 15 | sylibr 234 | 1 ⊢ (∀𝑥 ∈ 𝐴 Tr 𝐵 → Tr ∪ 𝑥 ∈ 𝐴 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 ⊆ wss 3976 ∪ ciun 5015 Tr wtr 5283 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-v 3490 df-ss 3993 df-uni 4932 df-iun 5017 df-tr 5284 |
This theorem is referenced by: truni 5299 r1tr 9845 r1elssi 9874 iunord 48768 |
Copyright terms: Public domain | W3C validator |