![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssv | Structured version Visualization version GIF version |
Description: Any class is a subclass of the universal class. (Contributed by NM, 31-Oct-1995.) |
Ref | Expression |
---|---|
ssv | ⊢ 𝐴 ⊆ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3400 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ V) | |
2 | 1 | ssriv 3802 | 1 ⊢ 𝐴 ⊆ V |
Colors of variables: wff setvar class |
Syntax hints: Vcvv 3385 ⊆ wss 3769 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-ext 2777 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2786 df-cleq 2792 df-clel 2795 df-v 3387 df-in 3776 df-ss 3783 |
This theorem is referenced by: inv1 4166 unv 4167 vss 4208 pssv 4211 disj2 4220 pwv 4625 unissint 4691 symdifv 4788 trv 4957 intabs 5017 xpss 5328 inxpssres 5329 djussxp 5471 dmv 5544 residOLD 5649 dmresi 5676 rescnvcnv 5813 cocnvcnv1 5865 relrelss 5878 dffn2 6258 oprabss 6980 fvresex 7374 ofmres 7397 f1stres 7425 f2ndres 7426 domssex2 8362 fineqv 8417 fiint 8479 marypha1lem 8581 marypha2 8587 cantnfval2 8816 oef1o 8845 inlresf1 9027 inrresf1 9029 djuun 9038 dfac12lem2 9254 dfac12a 9258 fin23lem41 9462 dfacfin7 9509 iunfo 9649 gch2 9785 axpre-sup 10278 wrdv 13549 setscom 16228 isofn 16749 homaf 16994 dmaf 17013 cdaf 17014 prdsinvlem 17840 frgpuplem 18500 gsum2dlem2 18685 gsum2d 18686 mgpf 18875 prdsmgp 18926 prdscrngd 18929 pws1 18932 mulgass3 18953 crngridl 19561 ply1lss 19888 coe1fval3 19900 coe1tm 19965 ply1coe 19988 evl1expd 20031 frlmbas 20424 islindf3 20490 pmatcollpw3lem 20916 clsconn 21562 ptbasfi 21713 upxp 21755 uptx 21757 prdstps 21761 hausdiag 21777 cnmptid 21793 cnmpt1st 21800 cnmpt2nd 21801 fbssint 21970 prdstmdd 22255 prdsxmslem2 22662 isngp2 22729 uniiccdif 23686 wlkdlem1 26935 0vfval 27986 xppreima 29968 xppreima2 29969 1stpreimas 30001 ffsrn 30022 gsummpt2d 30297 qtophaus 30419 cnre2csqlem 30472 cntmeas 30805 eulerpartlemmf 30953 eulerpartlemgf 30957 sseqfv1 30968 sseqfn 30969 sseqfv2 30973 coinflippv 31062 erdszelem2 31691 mpstssv 31953 filnetlem4 32888 bj-0int 33548 elxp8 33717 poimirlem16 33914 poimirlem19 33917 poimirlem20 33918 poimirlem26 33924 poimirlem27 33925 heibor1lem 34095 rmxyelqirr 38260 isnumbasgrplem1 38456 isnumbasgrplem2 38459 dfacbasgrp 38463 resnonrel 38681 comptiunov2i 38781 ntrneiel2 39166 ntrneik4w 39180 compneOLD 39425 conss2 39427 |
Copyright terms: Public domain | W3C validator |