![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssv | Structured version Visualization version GIF version |
Description: Any class is a subclass of the universal class. (Contributed by NM, 31-Oct-1995.) |
Ref | Expression |
---|---|
ssv | ⊢ 𝐴 ⊆ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3499 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ V) | |
2 | 1 | ssriv 3999 | 1 ⊢ 𝐴 ⊆ V |
Colors of variables: wff setvar class |
Syntax hints: Vcvv 3478 ⊆ wss 3963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-ss 3980 |
This theorem is referenced by: inv1 4404 unv 4405 vss 4452 pssv 4455 disj2 4464 pwv 4909 unissint 4977 symdifv 5091 trv 5279 intabs 5355 xpss 5705 inxpssres 5706 djussxp 5859 dmv 5936 dmresi 6072 cnvrescnv 6217 rescnvcnv 6226 cocnvcnv1 6279 relrelss 6295 fnresi 6698 dffn2 6739 oprabss 7540 fvresex 7983 ofmres 8008 f1stres 8037 f2ndres 8038 fsplitfpar 8142 domssex2 9176 fineqv 9297 fiint 9364 fiintOLD 9365 marypha1lem 9471 marypha2 9477 cantnfval2 9707 cottrcl 9757 inlresf1 9953 inrresf1 9955 djuun 9964 dfac12lem2 10183 dfac12a 10187 fin23lem41 10390 dfacfin7 10437 iunfo 10577 gch2 10713 axpre-sup 11207 wrdv 14564 setscom 17214 isofn 17823 homaf 18084 dmaf 18103 cdaf 18104 prdsinvlem 19080 frgpuplem 19805 gsum2dlem2 20004 gsum2d 20005 prdsmgp 20169 rngmgpf 20175 mgpf 20266 prdscrngd 20336 pws1 20339 mulgass3 20370 crngridl 21308 frlmbas 21793 islindf3 21864 psdmul 22188 ply1lss 22214 coe1fval3 22226 coe1tm 22292 ply1coe 22318 evl1expd 22365 pmatcollpw3lem 22805 clsconn 23454 ptbasfi 23605 upxp 23647 uptx 23649 prdstps 23653 hausdiag 23669 cnmpt1st 23692 cnmpt2nd 23693 fbssint 23862 prdstmdd 24148 prdsxmslem2 24558 isngp2 24626 uniiccdif 25627 wlkdlem1 29715 0vfval 30635 xppreima 32662 2ndimaxp 32663 2ndresdju 32666 xppreima2 32668 1stpreimas 32721 fsuppcurry1 32743 fsuppcurry2 32744 ffsrn 32747 gsummpt2d 33035 gsumpart 33043 elrgspnlem2 33233 lindflbs 33387 elrspunidl 33436 dimval 33628 dimvalfi 33629 qtophaus 33797 cnre2csqlem 33871 cntmeas 34207 eulerpartlemmf 34357 eulerpartlemgf 34361 sseqfv1 34371 sseqfn 34372 sseqfv2 34376 coinflippv 34465 fineqvacALT 35091 gblacfnacd 35092 wevgblacfn 35093 erdszelem2 35177 mpstssv 35524 filnetlem4 36364 bj-0int 37084 bj-idres 37143 elxp8 37354 poimirlem26 37633 poimirlem27 37634 heibor1lem 37796 rmxyelqirrOLD 42899 isnumbasgrplem1 43090 isnumbasgrplem2 43093 dfacbasgrp 43097 resnonrel 43582 comptiunov2i 43696 ntrneiel2 44076 ntrneik4w 44090 conss2 44439 ipoglb0 48783 mreclat 48786 |
Copyright terms: Public domain | W3C validator |