| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssv | Structured version Visualization version GIF version | ||
| Description: Any class is a subclass of the universal class. (Contributed by NM, 31-Oct-1995.) |
| Ref | Expression |
|---|---|
| ssv | ⊢ 𝐴 ⊆ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3500 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ V) | |
| 2 | 1 | ssriv 3986 | 1 ⊢ 𝐴 ⊆ V |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3479 ⊆ wss 3950 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-v 3481 df-ss 3967 |
| This theorem is referenced by: inv1 4397 unv 4398 vss 4445 pssv 4448 disj2 4457 pwv 4903 unissint 4971 symdifv 5085 trv 5272 intabs 5348 xpss 5700 inxpssres 5701 djussxp 5855 dmv 5932 dmresi 6069 cnvrescnv 6214 rescnvcnv 6223 cocnvcnv1 6276 relrelss 6292 fnresi 6696 dffn2 6737 oprabss 7542 fvresex 7985 ofmres 8010 f1stres 8039 f2ndres 8040 fsplitfpar 8144 domssex2 9178 fineqv 9300 fiint 9367 fiintOLD 9368 marypha1lem 9474 marypha2 9480 cantnfval2 9710 cottrcl 9760 inlresf1 9956 inrresf1 9958 djuun 9967 dfac12lem2 10186 dfac12a 10190 fin23lem41 10393 dfacfin7 10440 iunfo 10580 gch2 10716 axpre-sup 11210 wrdv 14568 setscom 17218 isofn 17820 homaf 18076 dmaf 18095 cdaf 18096 prdsinvlem 19068 frgpuplem 19791 gsum2dlem2 19990 gsum2d 19991 prdsmgp 20149 rngmgpf 20155 mgpf 20246 prdscrngd 20320 pws1 20323 mulgass3 20354 crngridl 21291 frlmbas 21776 islindf3 21847 psdmul 22171 ply1lss 22199 coe1fval3 22211 coe1tm 22277 ply1coe 22303 evl1expd 22350 pmatcollpw3lem 22790 clsconn 23439 ptbasfi 23590 upxp 23632 uptx 23634 prdstps 23638 hausdiag 23654 cnmpt1st 23677 cnmpt2nd 23678 fbssint 23847 prdstmdd 24133 prdsxmslem2 24543 isngp2 24611 uniiccdif 25614 wlkdlem1 29701 0vfval 30626 xppreima 32656 2ndimaxp 32657 2ndresdju 32660 xppreima2 32662 1stpreimas 32716 fsuppcurry1 32737 fsuppcurry2 32738 ffsrn 32741 gsummpt2d 33053 gsumpart 33061 elrgspnlem2 33248 lindflbs 33408 elrspunidl 33457 dimval 33652 dimvalfi 33653 qtophaus 33836 cnre2csqlem 33910 cntmeas 34228 eulerpartlemmf 34378 eulerpartlemgf 34382 sseqfv1 34392 sseqfn 34393 sseqfv2 34397 coinflippv 34487 fineqvacALT 35113 gblacfnacd 35114 wevgblacfn 35115 erdszelem2 35198 mpstssv 35545 filnetlem4 36383 bj-0int 37103 bj-idres 37162 elxp8 37373 poimirlem26 37654 poimirlem27 37655 heibor1lem 37817 rmxyelqirrOLD 42927 isnumbasgrplem1 43118 isnumbasgrplem2 43121 dfacbasgrp 43125 resnonrel 43610 comptiunov2i 43724 ntrneiel2 44104 ntrneik4w 44118 conss2 44467 slotresfo 48803 basresposfo 48882 ipoglb0 48898 mreclat 48901 rescofuf 48940 |
| Copyright terms: Public domain | W3C validator |