![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssv | Structured version Visualization version GIF version |
Description: Any class is a subclass of the universal class. (Contributed by NM, 31-Oct-1995.) |
Ref | Expression |
---|---|
ssv | ⊢ 𝐴 ⊆ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3492 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ V) | |
2 | 1 | ssriv 3986 | 1 ⊢ 𝐴 ⊆ V |
Colors of variables: wff setvar class |
Syntax hints: Vcvv 3473 ⊆ wss 3949 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2706 df-cleq 2720 df-clel 2806 df-v 3475 df-in 3956 df-ss 3966 |
This theorem is referenced by: inv1 4398 unv 4399 vss 4447 pssv 4450 disj2 4461 pwv 4909 unissint 4979 symdifv 5093 trv 5283 intabs 5348 xpss 5698 inxpssres 5699 djussxp 5852 dmv 5929 dmresi 6060 cnvrescnv 6204 rescnvcnv 6213 cocnvcnv1 6266 relrelss 6282 fnresi 6689 dffn2 6729 oprabss 7533 fvresex 7969 ofmres 7994 f1stres 8023 f2ndres 8024 fsplitfpar 8129 domssex2 9168 fineqv 9294 fiint 9356 marypha1lem 9464 marypha2 9470 cantnfval2 9700 cottrcl 9750 inlresf1 9946 inrresf1 9948 djuun 9957 dfac12lem2 10175 dfac12a 10179 fin23lem41 10383 dfacfin7 10430 iunfo 10570 gch2 10706 axpre-sup 11200 wrdv 14519 setscom 17156 isofn 17765 homaf 18026 dmaf 18045 cdaf 18046 prdsinvlem 19012 frgpuplem 19734 gsum2dlem2 19933 gsum2d 19934 prdsmgp 20098 rngmgpf 20104 mgpf 20195 prdscrngd 20265 pws1 20268 mulgass3 20299 crngridl 21179 frlmbas 21696 islindf3 21767 psdmul 22097 ply1lss 22122 coe1fval3 22134 coe1tm 22199 ply1coe 22224 evl1expd 22271 pmatcollpw3lem 22705 clsconn 23354 ptbasfi 23505 upxp 23547 uptx 23549 prdstps 23553 hausdiag 23569 cnmpt1st 23592 cnmpt2nd 23593 fbssint 23762 prdstmdd 24048 prdsxmslem2 24458 isngp2 24526 uniiccdif 25527 wlkdlem1 29516 0vfval 30436 xppreima 32453 2ndimaxp 32454 2ndresdju 32456 xppreima2 32458 1stpreimas 32506 fsuppcurry1 32528 fsuppcurry2 32529 ffsrn 32532 gsummpt2d 32784 gsumpart 32790 lindflbs 33119 elrspunidl 33169 dimval 33331 dimvalfi 33332 qtophaus 33470 cnre2csqlem 33544 cntmeas 33878 eulerpartlemmf 34028 eulerpartlemgf 34032 sseqfv1 34042 sseqfn 34043 sseqfv2 34047 coinflippv 34136 fineqvacALT 34751 erdszelem2 34835 mpstssv 35182 filnetlem4 35898 bj-0int 36613 bj-idres 36672 elxp8 36883 poimirlem26 37152 poimirlem27 37153 heibor1lem 37315 rmxyelqirrOLD 42362 isnumbasgrplem1 42556 isnumbasgrplem2 42559 dfacbasgrp 42563 resnonrel 43053 comptiunov2i 43167 ntrneiel2 43547 ntrneik4w 43561 conss2 43911 ipoglb0 48083 mreclat 48086 |
Copyright terms: Public domain | W3C validator |