![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssv | Structured version Visualization version GIF version |
Description: Any class is a subclass of the universal class. (Contributed by NM, 31-Oct-1995.) |
Ref | Expression |
---|---|
ssv | ⊢ 𝐴 ⊆ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3509 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ V) | |
2 | 1 | ssriv 4012 | 1 ⊢ 𝐴 ⊆ V |
Colors of variables: wff setvar class |
Syntax hints: Vcvv 3488 ⊆ wss 3976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-ss 3993 |
This theorem is referenced by: inv1 4421 unv 4422 vss 4469 pssv 4472 disj2 4481 pwv 4928 unissint 4996 symdifv 5109 trv 5297 intabs 5367 xpss 5716 inxpssres 5717 djussxp 5870 dmv 5947 dmresi 6081 cnvrescnv 6226 rescnvcnv 6235 cocnvcnv1 6288 relrelss 6304 fnresi 6709 dffn2 6749 oprabss 7557 fvresex 8000 ofmres 8025 f1stres 8054 f2ndres 8055 fsplitfpar 8159 domssex2 9203 fineqv 9326 fiint 9394 fiintOLD 9395 marypha1lem 9502 marypha2 9508 cantnfval2 9738 cottrcl 9788 inlresf1 9984 inrresf1 9986 djuun 9995 dfac12lem2 10214 dfac12a 10218 fin23lem41 10421 dfacfin7 10468 iunfo 10608 gch2 10744 axpre-sup 11238 wrdv 14577 setscom 17227 isofn 17836 homaf 18097 dmaf 18116 cdaf 18117 prdsinvlem 19089 frgpuplem 19814 gsum2dlem2 20013 gsum2d 20014 prdsmgp 20178 rngmgpf 20184 mgpf 20275 prdscrngd 20345 pws1 20348 mulgass3 20379 crngridl 21313 frlmbas 21798 islindf3 21869 psdmul 22193 ply1lss 22219 coe1fval3 22231 coe1tm 22297 ply1coe 22323 evl1expd 22370 pmatcollpw3lem 22810 clsconn 23459 ptbasfi 23610 upxp 23652 uptx 23654 prdstps 23658 hausdiag 23674 cnmpt1st 23697 cnmpt2nd 23698 fbssint 23867 prdstmdd 24153 prdsxmslem2 24563 isngp2 24631 uniiccdif 25632 wlkdlem1 29718 0vfval 30638 xppreima 32664 2ndimaxp 32665 2ndresdju 32667 xppreima2 32669 1stpreimas 32717 fsuppcurry1 32739 fsuppcurry2 32740 ffsrn 32743 gsummpt2d 33032 gsumpart 33038 lindflbs 33372 elrspunidl 33421 dimval 33613 dimvalfi 33614 qtophaus 33782 cnre2csqlem 33856 cntmeas 34190 eulerpartlemmf 34340 eulerpartlemgf 34344 sseqfv1 34354 sseqfn 34355 sseqfv2 34359 coinflippv 34448 fineqvacALT 35074 gblacfnacd 35075 wevgblacfn 35076 erdszelem2 35160 mpstssv 35507 filnetlem4 36347 bj-0int 37067 bj-idres 37126 elxp8 37337 poimirlem26 37606 poimirlem27 37607 heibor1lem 37769 rmxyelqirrOLD 42867 isnumbasgrplem1 43058 isnumbasgrplem2 43061 dfacbasgrp 43065 resnonrel 43554 comptiunov2i 43668 ntrneiel2 44048 ntrneik4w 44062 conss2 44412 ipoglb0 48666 mreclat 48669 |
Copyright terms: Public domain | W3C validator |