Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssv | Structured version Visualization version GIF version |
Description: Any class is a subclass of the universal class. (Contributed by NM, 31-Oct-1995.) |
Ref | Expression |
---|---|
ssv | ⊢ 𝐴 ⊆ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3447 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ V) | |
2 | 1 | ssriv 3924 | 1 ⊢ 𝐴 ⊆ V |
Colors of variables: wff setvar class |
Syntax hints: Vcvv 3429 ⊆ wss 3886 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3431 df-in 3893 df-ss 3903 |
This theorem is referenced by: inv1 4328 unv 4329 vss 4377 pssv 4380 disj2 4391 pwv 4836 unissint 4903 symdifv 5014 trv 5202 intabs 5264 xpss 5600 inxpssres 5601 djussxp 5747 dmv 5824 dmresi 5954 cnvrescnv 6091 rescnvcnv 6100 cocnvcnv1 6154 relrelss 6169 fnresi 6553 dffn2 6594 oprabss 7371 fvresex 7792 ofmres 7816 f1stres 7844 f2ndres 7845 fsplitfpar 7946 domssex2 8911 fineqv 9025 fiint 9078 marypha1lem 9179 marypha2 9185 cantnfval2 9414 cottrcl 9464 inlresf1 9683 inrresf1 9685 djuun 9694 dfac12lem2 9910 dfac12a 9914 fin23lem41 10118 dfacfin7 10165 iunfo 10305 gch2 10441 axpre-sup 10935 wrdv 14242 setscom 16891 isofn 17497 homaf 17755 dmaf 17774 cdaf 17775 prdsinvlem 18694 frgpuplem 19388 gsum2dlem2 19582 gsum2d 19583 mgpf 19808 prdsmgp 19859 prdscrngd 19862 pws1 19865 mulgass3 19889 crngridl 20519 frlmbas 20972 islindf3 21043 ply1lss 21377 coe1fval3 21389 coe1tm 21454 ply1coe 21477 evl1expd 21521 pmatcollpw3lem 21942 clsconn 22591 ptbasfi 22742 upxp 22784 uptx 22786 prdstps 22790 hausdiag 22806 cnmpt1st 22829 cnmpt2nd 22830 fbssint 22999 prdstmdd 23285 prdsxmslem2 23695 isngp2 23763 uniiccdif 24752 wlkdlem1 28059 0vfval 28976 xppreima 30991 2ndimaxp 30992 2ndresdju 30994 xppreima2 30996 1stpreimas 31046 fsuppcurry1 31068 fsuppcurry2 31069 ffsrn 31072 gsummpt2d 31317 gsumpart 31323 lindflbs 31582 elrspunidl 31614 dimval 31694 dimvalfi 31695 qtophaus 31794 cnre2csqlem 31868 cntmeas 32202 eulerpartlemmf 32350 eulerpartlemgf 32354 sseqfv1 32364 sseqfn 32365 sseqfv2 32369 coinflippv 32458 fineqvacALT 33075 erdszelem2 33162 mpstssv 33509 filnetlem4 34578 bj-0int 35280 bj-idres 35339 elxp8 35550 poimirlem26 35811 poimirlem27 35812 heibor1lem 35975 rmxyelqirr 40740 isnumbasgrplem1 40934 isnumbasgrplem2 40937 dfacbasgrp 40941 resnonrel 41181 comptiunov2i 41295 ntrneiel2 41677 ntrneik4w 41691 conss2 42042 ipoglb0 46258 mreclat 46261 |
Copyright terms: Public domain | W3C validator |