| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssv | Structured version Visualization version GIF version | ||
| Description: Any class is a subclass of the universal class. (Contributed by NM, 31-Oct-1995.) |
| Ref | Expression |
|---|---|
| ssv | ⊢ 𝐴 ⊆ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3458 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ V) | |
| 2 | 1 | ssriv 3934 | 1 ⊢ 𝐴 ⊆ V |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3437 ⊆ wss 3898 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-ss 3915 |
| This theorem is referenced by: inv1 4347 unv 4348 vss 4395 pssv 4398 disj2 4407 pwv 4857 unissint 4924 symdifv 5038 trv 5215 intabs 5291 xpss 5637 inxpssres 5638 djussxp 5791 dmv 5868 dmresi 6007 cnvrescnv 6149 rescnvcnv 6158 cocnvcnv1 6212 relrelss 6227 fnresi 6617 dffn2 6660 oprabss 7462 fvresex 7900 ofmres 7924 f1stres 7953 f2ndres 7954 fsplitfpar 8056 domssex2 9059 fineqv 9160 fiint 9220 marypha1lem 9326 marypha2 9332 cantnfval2 9568 cottrcl 9618 inlresf1 9817 inrresf1 9819 djuun 9828 dfac12lem2 10045 dfac12a 10049 fin23lem41 10252 dfacfin7 10299 iunfo 10439 gch2 10575 axpre-sup 11069 wrdv 14440 setscom 17095 isofn 17686 homaf 17941 dmaf 17960 cdaf 17961 prdsinvlem 18966 frgpuplem 19688 gsum2dlem2 19887 gsum2d 19888 prdsmgp 20073 rngmgpf 20079 mgpf 20170 prdscrngd 20244 pws1 20247 mulgass3 20275 crngridl 21221 frlmbas 21696 islindf3 21767 psdmul 22084 ply1lss 22112 coe1fval3 22124 coe1tm 22190 ply1coe 22216 evl1expd 22263 pmatcollpw3lem 22701 clsconn 23348 ptbasfi 23499 upxp 23541 uptx 23543 prdstps 23547 hausdiag 23563 cnmpt1st 23586 cnmpt2nd 23587 fbssint 23756 prdstmdd 24042 prdsxmslem2 24447 isngp2 24515 uniiccdif 25509 wlkdlem1 29663 0vfval 30590 xppreima 32631 2ndimaxp 32632 2ndresdju 32635 xppreima2 32637 1stpreimas 32693 fsuppcurry1 32713 fsuppcurry2 32714 ffsrn 32717 gsummpt2d 33038 gsumpart 33046 elrgspnlem2 33219 lindflbs 33353 elrspunidl 33402 dimval 33636 dimvalfi 33637 qtophaus 33872 cnre2csqlem 33946 cntmeas 34262 eulerpartlemmf 34411 eulerpartlemgf 34415 sseqfv1 34425 sseqfn 34426 sseqfv2 34430 coinflippv 34520 fineqvacALT 35163 gblacfnacd 35169 vonf1owev 35175 wevgblacfn 35176 erdszelem2 35259 mpstssv 35606 filnetlem4 36448 bj-0int 37168 bj-idres 37227 elxp8 37438 poimirlem26 37709 poimirlem27 37710 heibor1lem 37872 dmsucmap 38504 isnumbasgrplem1 43221 isnumbasgrplem2 43224 dfacbasgrp 43228 resnonrel 43712 comptiunov2i 43826 ntrneiel2 44206 ntrneik4w 44220 conss2 44562 permaxun 45131 permac8prim 45134 slotresfo 49026 basresposfo 49105 ipoglb0 49121 mreclat 49124 isofnALT 49159 rescofuf 49221 initopropdlem 49368 termopropdlem 49369 zeroopropdlem 49370 |
| Copyright terms: Public domain | W3C validator |