| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssv | Structured version Visualization version GIF version | ||
| Description: Any class is a subclass of the universal class. (Contributed by NM, 31-Oct-1995.) |
| Ref | Expression |
|---|---|
| ssv | ⊢ 𝐴 ⊆ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3459 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ V) | |
| 2 | 1 | ssriv 3941 | 1 ⊢ 𝐴 ⊆ V |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3438 ⊆ wss 3905 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3440 df-ss 3922 |
| This theorem is referenced by: inv1 4351 unv 4352 vss 4399 pssv 4402 disj2 4411 pwv 4858 unissint 4925 symdifv 5038 trv 5215 intabs 5291 xpss 5639 inxpssres 5640 djussxp 5792 dmv 5869 dmresi 6007 cnvrescnv 6148 rescnvcnv 6157 cocnvcnv1 6210 relrelss 6225 fnresi 6615 dffn2 6658 oprabss 7461 fvresex 7902 ofmres 7926 f1stres 7955 f2ndres 7956 fsplitfpar 8058 domssex2 9061 fineqv 9168 fiint 9235 fiintOLD 9236 marypha1lem 9342 marypha2 9348 cantnfval2 9584 cottrcl 9634 inlresf1 9830 inrresf1 9832 djuun 9841 dfac12lem2 10058 dfac12a 10062 fin23lem41 10265 dfacfin7 10312 iunfo 10452 gch2 10588 axpre-sup 11082 wrdv 14454 setscom 17109 isofn 17700 homaf 17955 dmaf 17974 cdaf 17975 prdsinvlem 18946 frgpuplem 19669 gsum2dlem2 19868 gsum2d 19869 prdsmgp 20054 rngmgpf 20060 mgpf 20151 prdscrngd 20225 pws1 20228 mulgass3 20256 crngridl 21205 frlmbas 21680 islindf3 21751 psdmul 22069 ply1lss 22097 coe1fval3 22109 coe1tm 22175 ply1coe 22201 evl1expd 22248 pmatcollpw3lem 22686 clsconn 23333 ptbasfi 23484 upxp 23526 uptx 23528 prdstps 23532 hausdiag 23548 cnmpt1st 23571 cnmpt2nd 23572 fbssint 23741 prdstmdd 24027 prdsxmslem2 24433 isngp2 24501 uniiccdif 25495 wlkdlem1 29644 0vfval 30568 xppreima 32602 2ndimaxp 32603 2ndresdju 32606 xppreima2 32608 1stpreimas 32662 fsuppcurry1 32681 fsuppcurry2 32682 ffsrn 32685 gsummpt2d 33015 gsumpart 33023 elrgspnlem2 33196 lindflbs 33329 elrspunidl 33378 dimval 33575 dimvalfi 33576 qtophaus 33805 cnre2csqlem 33879 cntmeas 34195 eulerpartlemmf 34345 eulerpartlemgf 34349 sseqfv1 34359 sseqfn 34360 sseqfv2 34364 coinflippv 34454 fineqvacALT 35075 gblacfnacd 35077 vonf1owev 35083 wevgblacfn 35084 erdszelem2 35167 mpstssv 35514 filnetlem4 36357 bj-0int 37077 bj-idres 37136 elxp8 37347 poimirlem26 37628 poimirlem27 37629 heibor1lem 37791 isnumbasgrplem1 43077 isnumbasgrplem2 43080 dfacbasgrp 43084 resnonrel 43568 comptiunov2i 43682 ntrneiel2 44062 ntrneik4w 44076 conss2 44419 permaxun 44988 permac8prim 44991 slotresfo 48887 basresposfo 48966 ipoglb0 48982 mreclat 48985 isofnALT 49020 rescofuf 49082 initopropdlem 49229 termopropdlem 49230 zeroopropdlem 49231 |
| Copyright terms: Public domain | W3C validator |