| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssv | Structured version Visualization version GIF version | ||
| Description: Any class is a subclass of the universal class. (Contributed by NM, 31-Oct-1995.) |
| Ref | Expression |
|---|---|
| ssv | ⊢ 𝐴 ⊆ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3468 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ V) | |
| 2 | 1 | ssriv 3950 | 1 ⊢ 𝐴 ⊆ V |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3447 ⊆ wss 3914 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-ss 3931 |
| This theorem is referenced by: inv1 4361 unv 4362 vss 4409 pssv 4412 disj2 4421 pwv 4868 unissint 4936 symdifv 5050 trv 5228 intabs 5304 xpss 5654 inxpssres 5655 djussxp 5809 dmv 5886 dmresi 6023 cnvrescnv 6168 rescnvcnv 6177 cocnvcnv1 6230 relrelss 6246 fnresi 6647 dffn2 6690 oprabss 7497 fvresex 7938 ofmres 7963 f1stres 7992 f2ndres 7993 fsplitfpar 8097 domssex2 9101 fineqv 9210 fiint 9277 fiintOLD 9278 marypha1lem 9384 marypha2 9390 cantnfval2 9622 cottrcl 9672 inlresf1 9868 inrresf1 9870 djuun 9879 dfac12lem2 10098 dfac12a 10102 fin23lem41 10305 dfacfin7 10352 iunfo 10492 gch2 10628 axpre-sup 11122 wrdv 14494 setscom 17150 isofn 17737 homaf 17992 dmaf 18011 cdaf 18012 prdsinvlem 18981 frgpuplem 19702 gsum2dlem2 19901 gsum2d 19902 prdsmgp 20060 rngmgpf 20066 mgpf 20157 prdscrngd 20231 pws1 20234 mulgass3 20262 crngridl 21190 frlmbas 21664 islindf3 21735 psdmul 22053 ply1lss 22081 coe1fval3 22093 coe1tm 22159 ply1coe 22185 evl1expd 22232 pmatcollpw3lem 22670 clsconn 23317 ptbasfi 23468 upxp 23510 uptx 23512 prdstps 23516 hausdiag 23532 cnmpt1st 23555 cnmpt2nd 23556 fbssint 23725 prdstmdd 24011 prdsxmslem2 24417 isngp2 24485 uniiccdif 25479 wlkdlem1 29610 0vfval 30535 xppreima 32569 2ndimaxp 32570 2ndresdju 32573 xppreima2 32575 1stpreimas 32629 fsuppcurry1 32648 fsuppcurry2 32649 ffsrn 32652 gsummpt2d 32989 gsumpart 32997 elrgspnlem2 33194 lindflbs 33350 elrspunidl 33399 dimval 33596 dimvalfi 33597 qtophaus 33826 cnre2csqlem 33900 cntmeas 34216 eulerpartlemmf 34366 eulerpartlemgf 34370 sseqfv1 34380 sseqfn 34381 sseqfv2 34385 coinflippv 34475 fineqvacALT 35088 gblacfnacd 35089 vonf1owev 35095 wevgblacfn 35096 erdszelem2 35179 mpstssv 35526 filnetlem4 36369 bj-0int 37089 bj-idres 37148 elxp8 37359 poimirlem26 37640 poimirlem27 37641 heibor1lem 37803 rmxyelqirrOLD 42899 isnumbasgrplem1 43090 isnumbasgrplem2 43093 dfacbasgrp 43097 resnonrel 43581 comptiunov2i 43695 ntrneiel2 44075 ntrneik4w 44089 conss2 44432 permaxun 45001 permac8prim 45004 slotresfo 48887 basresposfo 48966 ipoglb0 48982 mreclat 48985 isofnALT 49020 rescofuf 49082 initopropdlem 49229 termopropdlem 49230 zeroopropdlem 49231 |
| Copyright terms: Public domain | W3C validator |