Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssv | Structured version Visualization version GIF version |
Description: Any class is a subclass of the universal class. (Contributed by NM, 31-Oct-1995.) |
Ref | Expression |
---|---|
ssv | ⊢ 𝐴 ⊆ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3451 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ V) | |
2 | 1 | ssriv 3926 | 1 ⊢ 𝐴 ⊆ V |
Colors of variables: wff setvar class |
Syntax hints: Vcvv 3433 ⊆ wss 3888 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2069 df-clab 2717 df-cleq 2731 df-clel 2817 df-v 3435 df-in 3895 df-ss 3905 |
This theorem is referenced by: inv1 4329 unv 4330 vss 4378 pssv 4381 disj2 4392 pwv 4837 unissint 4904 symdifv 5016 trv 5204 intabs 5267 xpss 5606 inxpssres 5607 djussxp 5757 dmv 5834 dmresi 5964 cnvrescnv 6103 rescnvcnv 6112 cocnvcnv1 6165 relrelss 6180 fnresi 6570 dffn2 6611 oprabss 7390 fvresex 7811 ofmres 7836 f1stres 7864 f2ndres 7865 fsplitfpar 7968 domssex2 8933 fineqv 9047 fiint 9100 marypha1lem 9201 marypha2 9207 cantnfval2 9436 cottrcl 9486 inlresf1 9682 inrresf1 9684 djuun 9693 dfac12lem2 9909 dfac12a 9913 fin23lem41 10117 dfacfin7 10164 iunfo 10304 gch2 10440 axpre-sup 10934 wrdv 14241 setscom 16890 isofn 17496 homaf 17754 dmaf 17773 cdaf 17774 prdsinvlem 18693 frgpuplem 19387 gsum2dlem2 19581 gsum2d 19582 mgpf 19807 prdsmgp 19858 prdscrngd 19861 pws1 19864 mulgass3 19888 crngridl 20518 frlmbas 20971 islindf3 21042 ply1lss 21376 coe1fval3 21388 coe1tm 21453 ply1coe 21476 evl1expd 21520 pmatcollpw3lem 21941 clsconn 22590 ptbasfi 22741 upxp 22783 uptx 22785 prdstps 22789 hausdiag 22805 cnmpt1st 22828 cnmpt2nd 22829 fbssint 22998 prdstmdd 23284 prdsxmslem2 23694 isngp2 23762 uniiccdif 24751 wlkdlem1 28059 0vfval 28977 xppreima 30992 2ndimaxp 30993 2ndresdju 30995 xppreima2 30997 1stpreimas 31047 fsuppcurry1 31069 fsuppcurry2 31070 ffsrn 31073 gsummpt2d 31318 gsumpart 31324 lindflbs 31583 elrspunidl 31615 dimval 31695 dimvalfi 31696 qtophaus 31795 cnre2csqlem 31869 cntmeas 32203 eulerpartlemmf 32351 eulerpartlemgf 32355 sseqfv1 32365 sseqfn 32366 sseqfv2 32370 coinflippv 32459 fineqvacALT 33076 erdszelem2 33163 mpstssv 33510 filnetlem4 34579 bj-0int 35281 bj-idres 35340 elxp8 35551 poimirlem26 35812 poimirlem27 35813 heibor1lem 35976 rmxyelqirr 40739 isnumbasgrplem1 40933 isnumbasgrplem2 40936 dfacbasgrp 40940 resnonrel 41207 comptiunov2i 41321 ntrneiel2 41703 ntrneik4w 41717 conss2 42068 ipoglb0 46291 mreclat 46294 |
Copyright terms: Public domain | W3C validator |