| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssv | Structured version Visualization version GIF version | ||
| Description: Any class is a subclass of the universal class. (Contributed by NM, 31-Oct-1995.) |
| Ref | Expression |
|---|---|
| ssv | ⊢ 𝐴 ⊆ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3457 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ V) | |
| 2 | 1 | ssriv 3938 | 1 ⊢ 𝐴 ⊆ V |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3436 ⊆ wss 3902 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-ss 3919 |
| This theorem is referenced by: inv1 4348 unv 4349 vss 4396 pssv 4399 disj2 4408 pwv 4856 unissint 4922 symdifv 5034 trv 5211 intabs 5287 xpss 5632 inxpssres 5633 djussxp 5785 dmv 5862 dmresi 6001 cnvrescnv 6142 rescnvcnv 6151 cocnvcnv1 6205 relrelss 6220 fnresi 6610 dffn2 6653 oprabss 7454 fvresex 7892 ofmres 7916 f1stres 7945 f2ndres 7946 fsplitfpar 8048 domssex2 9050 fineqv 9151 fiint 9211 marypha1lem 9317 marypha2 9323 cantnfval2 9559 cottrcl 9609 inlresf1 9808 inrresf1 9810 djuun 9819 dfac12lem2 10036 dfac12a 10040 fin23lem41 10243 dfacfin7 10290 iunfo 10430 gch2 10566 axpre-sup 11060 wrdv 14436 setscom 17091 isofn 17682 homaf 17937 dmaf 17956 cdaf 17957 prdsinvlem 18962 frgpuplem 19685 gsum2dlem2 19884 gsum2d 19885 prdsmgp 20070 rngmgpf 20076 mgpf 20167 prdscrngd 20241 pws1 20244 mulgass3 20272 crngridl 21218 frlmbas 21693 islindf3 21764 psdmul 22082 ply1lss 22110 coe1fval3 22122 coe1tm 22188 ply1coe 22214 evl1expd 22261 pmatcollpw3lem 22699 clsconn 23346 ptbasfi 23497 upxp 23539 uptx 23541 prdstps 23545 hausdiag 23561 cnmpt1st 23584 cnmpt2nd 23585 fbssint 23754 prdstmdd 24040 prdsxmslem2 24445 isngp2 24513 uniiccdif 25507 wlkdlem1 29660 0vfval 30584 xppreima 32625 2ndimaxp 32626 2ndresdju 32629 xppreima2 32631 1stpreimas 32685 fsuppcurry1 32705 fsuppcurry2 32706 ffsrn 32709 gsummpt2d 33027 gsumpart 33035 elrgspnlem2 33208 lindflbs 33342 elrspunidl 33391 dimval 33611 dimvalfi 33612 qtophaus 33847 cnre2csqlem 33921 cntmeas 34237 eulerpartlemmf 34386 eulerpartlemgf 34390 sseqfv1 34400 sseqfn 34401 sseqfv2 34405 coinflippv 34495 fineqvacALT 35138 gblacfnacd 35144 vonf1owev 35150 wevgblacfn 35151 erdszelem2 35234 mpstssv 35581 filnetlem4 36421 bj-0int 37141 bj-idres 37200 elxp8 37411 poimirlem26 37692 poimirlem27 37693 heibor1lem 37855 isnumbasgrplem1 43140 isnumbasgrplem2 43143 dfacbasgrp 43147 resnonrel 43631 comptiunov2i 43745 ntrneiel2 44125 ntrneik4w 44139 conss2 44481 permaxun 45050 permac8prim 45053 slotresfo 48936 basresposfo 49015 ipoglb0 49031 mreclat 49034 isofnALT 49069 rescofuf 49131 initopropdlem 49278 termopropdlem 49279 zeroopropdlem 49280 |
| Copyright terms: Public domain | W3C validator |