Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssv | Structured version Visualization version GIF version |
Description: Any class is a subclass of the universal class. (Contributed by NM, 31-Oct-1995.) |
Ref | Expression |
---|---|
ssv | ⊢ 𝐴 ⊆ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3440 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ V) | |
2 | 1 | ssriv 3921 | 1 ⊢ 𝐴 ⊆ V |
Colors of variables: wff setvar class |
Syntax hints: Vcvv 3422 ⊆ wss 3883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 |
This theorem is referenced by: inv1 4325 unv 4326 vss 4374 pssv 4377 disj2 4388 pwv 4833 unissint 4900 symdifv 5011 trv 5199 intabs 5261 xpss 5596 inxpssres 5597 djussxp 5743 dmv 5820 dmresi 5950 cnvrescnv 6087 rescnvcnv 6096 cocnvcnv1 6150 relrelss 6165 fnresi 6545 dffn2 6586 oprabss 7359 fvresex 7776 ofmres 7800 f1stres 7828 f2ndres 7829 fsplitfpar 7930 domssex2 8873 fineqv 8967 fiint 9021 marypha1lem 9122 marypha2 9128 cantnfval2 9357 inlresf1 9604 inrresf1 9606 djuun 9615 dfac12lem2 9831 dfac12a 9835 fin23lem41 10039 dfacfin7 10086 iunfo 10226 gch2 10362 axpre-sup 10856 wrdv 14160 setscom 16809 isofn 17404 homaf 17661 dmaf 17680 cdaf 17681 prdsinvlem 18599 frgpuplem 19293 gsum2dlem2 19487 gsum2d 19488 mgpf 19713 prdsmgp 19764 prdscrngd 19767 pws1 19770 mulgass3 19794 crngridl 20422 frlmbas 20872 islindf3 20943 ply1lss 21277 coe1fval3 21289 coe1tm 21354 ply1coe 21377 evl1expd 21421 pmatcollpw3lem 21840 clsconn 22489 ptbasfi 22640 upxp 22682 uptx 22684 prdstps 22688 hausdiag 22704 cnmpt1st 22727 cnmpt2nd 22728 fbssint 22897 prdstmdd 23183 prdsxmslem2 23591 isngp2 23659 uniiccdif 24647 wlkdlem1 27952 0vfval 28869 xppreima 30884 2ndimaxp 30885 2ndresdju 30887 xppreima2 30889 1stpreimas 30940 fsuppcurry1 30962 fsuppcurry2 30963 ffsrn 30966 gsummpt2d 31211 gsumpart 31217 lindflbs 31476 elrspunidl 31508 dimval 31588 dimvalfi 31589 qtophaus 31688 cnre2csqlem 31762 cntmeas 32094 eulerpartlemmf 32242 eulerpartlemgf 32246 sseqfv1 32256 sseqfn 32257 sseqfv2 32261 coinflippv 32350 fineqvacALT 32967 erdszelem2 33054 mpstssv 33401 cottrcl 33705 filnetlem4 34497 bj-0int 35199 bj-idres 35258 elxp8 35469 poimirlem26 35730 poimirlem27 35731 heibor1lem 35894 rmxyelqirr 40648 isnumbasgrplem1 40842 isnumbasgrplem2 40845 dfacbasgrp 40849 resnonrel 41089 comptiunov2i 41203 ntrneiel2 41585 ntrneik4w 41599 conss2 41950 ipoglb0 46168 mreclat 46171 |
Copyright terms: Public domain | W3C validator |