| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssv | Structured version Visualization version GIF version | ||
| Description: Any class is a subclass of the universal class. (Contributed by NM, 31-Oct-1995.) |
| Ref | Expression |
|---|---|
| ssv | ⊢ 𝐴 ⊆ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3485 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ V) | |
| 2 | 1 | ssriv 3967 | 1 ⊢ 𝐴 ⊆ V |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3464 ⊆ wss 3931 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-ss 3948 |
| This theorem is referenced by: inv1 4378 unv 4379 vss 4426 pssv 4429 disj2 4438 pwv 4885 unissint 4953 symdifv 5067 trv 5248 intabs 5324 xpss 5675 inxpssres 5676 djussxp 5830 dmv 5907 dmresi 6044 cnvrescnv 6189 rescnvcnv 6198 cocnvcnv1 6251 relrelss 6267 fnresi 6672 dffn2 6713 oprabss 7520 fvresex 7963 ofmres 7988 f1stres 8017 f2ndres 8018 fsplitfpar 8122 domssex2 9156 fineqv 9276 fiint 9343 fiintOLD 9344 marypha1lem 9450 marypha2 9456 cantnfval2 9688 cottrcl 9738 inlresf1 9934 inrresf1 9936 djuun 9945 dfac12lem2 10164 dfac12a 10168 fin23lem41 10371 dfacfin7 10418 iunfo 10558 gch2 10694 axpre-sup 11188 wrdv 14552 setscom 17204 isofn 17793 homaf 18048 dmaf 18067 cdaf 18068 prdsinvlem 19037 frgpuplem 19758 gsum2dlem2 19957 gsum2d 19958 prdsmgp 20116 rngmgpf 20122 mgpf 20213 prdscrngd 20287 pws1 20290 mulgass3 20318 crngridl 21246 frlmbas 21720 islindf3 21791 psdmul 22109 ply1lss 22137 coe1fval3 22149 coe1tm 22215 ply1coe 22241 evl1expd 22288 pmatcollpw3lem 22726 clsconn 23373 ptbasfi 23524 upxp 23566 uptx 23568 prdstps 23572 hausdiag 23588 cnmpt1st 23611 cnmpt2nd 23612 fbssint 23781 prdstmdd 24067 prdsxmslem2 24473 isngp2 24541 uniiccdif 25536 wlkdlem1 29667 0vfval 30592 xppreima 32628 2ndimaxp 32629 2ndresdju 32632 xppreima2 32634 1stpreimas 32688 fsuppcurry1 32707 fsuppcurry2 32708 ffsrn 32711 gsummpt2d 33048 gsumpart 33056 elrgspnlem2 33243 lindflbs 33399 elrspunidl 33448 dimval 33645 dimvalfi 33646 qtophaus 33872 cnre2csqlem 33946 cntmeas 34262 eulerpartlemmf 34412 eulerpartlemgf 34416 sseqfv1 34426 sseqfn 34427 sseqfv2 34431 coinflippv 34521 fineqvacALT 35134 gblacfnacd 35135 wevgblacfn 35136 erdszelem2 35219 mpstssv 35566 filnetlem4 36404 bj-0int 37124 bj-idres 37183 elxp8 37394 poimirlem26 37675 poimirlem27 37676 heibor1lem 37838 rmxyelqirrOLD 42909 isnumbasgrplem1 43100 isnumbasgrplem2 43103 dfacbasgrp 43107 resnonrel 43591 comptiunov2i 43705 ntrneiel2 44085 ntrneik4w 44099 conss2 44442 permaxun 45011 permac8prim 45014 slotresfo 48853 basresposfo 48932 ipoglb0 48948 mreclat 48951 isofnALT 48981 rescofuf 49036 initopropdlem 49137 termopropdlem 49138 zeroopropdlem 49139 |
| Copyright terms: Public domain | W3C validator |