| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tr0 | Structured version Visualization version GIF version | ||
| Description: The empty set is transitive. (Contributed by NM, 16-Sep-1993.) |
| Ref | Expression |
|---|---|
| tr0 | ⊢ Tr ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ss 4363 | . 2 ⊢ ∅ ⊆ 𝒫 ∅ | |
| 2 | dftr4 5221 | . 2 ⊢ (Tr ∅ ↔ ∅ ⊆ 𝒫 ∅) | |
| 3 | 1, 2 | mpbir 231 | 1 ⊢ Tr ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3914 ∅c0 4296 𝒫 cpw 4563 Tr wtr 5214 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-v 3449 df-dif 3917 df-ss 3931 df-nul 4297 df-pw 4565 df-uni 4872 df-tr 5215 |
| This theorem is referenced by: ord0 6386 tctr 9693 tc0 9700 r1tr 9729 |
| Copyright terms: Public domain | W3C validator |