MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tr0 Structured version   Visualization version   GIF version

Theorem tr0 5198
Description: The empty set is transitive. (Contributed by NM, 16-Sep-1993.)
Assertion
Ref Expression
tr0 Tr ∅

Proof of Theorem tr0
StepHypRef Expression
1 0ss 4327 . 2 ∅ ⊆ 𝒫 ∅
2 dftr4 5192 . 2 (Tr ∅ ↔ ∅ ⊆ 𝒫 ∅)
31, 2mpbir 230 1 Tr ∅
Colors of variables: wff setvar class
Syntax hints:  wss 3883  c0 4253  𝒫 cpw 4530  Tr wtr 5187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-11 2156  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-v 3424  df-dif 3886  df-in 3890  df-ss 3900  df-nul 4254  df-pw 4532  df-uni 4837  df-tr 5188
This theorem is referenced by:  ord0  6303  tctr  9429  tc0  9436  r1tr  9465
  Copyright terms: Public domain W3C validator