Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tr0 | Structured version Visualization version GIF version |
Description: The empty set is transitive. (Contributed by NM, 16-Sep-1993.) |
Ref | Expression |
---|---|
tr0 | ⊢ Tr ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 4330 | . 2 ⊢ ∅ ⊆ 𝒫 ∅ | |
2 | dftr4 5196 | . 2 ⊢ (Tr ∅ ↔ ∅ ⊆ 𝒫 ∅) | |
3 | 1, 2 | mpbir 230 | 1 ⊢ Tr ∅ |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3887 ∅c0 4256 𝒫 cpw 4533 Tr wtr 5191 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-v 3434 df-dif 3890 df-in 3894 df-ss 3904 df-nul 4257 df-pw 4535 df-uni 4840 df-tr 5192 |
This theorem is referenced by: ord0 6318 tctr 9498 tc0 9505 r1tr 9534 |
Copyright terms: Public domain | W3C validator |