MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tr0 Structured version   Visualization version   GIF version

Theorem tr0 5212
Description: The empty set is transitive. (Contributed by NM, 16-Sep-1993.)
Assertion
Ref Expression
tr0 Tr ∅

Proof of Theorem tr0
StepHypRef Expression
1 0ss 4349 . 2 ∅ ⊆ 𝒫 ∅
2 dftr4 5206 . 2 (Tr ∅ ↔ ∅ ⊆ 𝒫 ∅)
31, 2mpbir 231 1 Tr ∅
Colors of variables: wff setvar class
Syntax hints:  wss 3898  c0 4282  𝒫 cpw 4549  Tr wtr 5200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-v 3439  df-dif 3901  df-ss 3915  df-nul 4283  df-pw 4551  df-uni 4859  df-tr 5201
This theorem is referenced by:  ord0  6365  tctr  9635  tc0  9642  r1tr  9676
  Copyright terms: Public domain W3C validator