MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tr0 Structured version   Visualization version   GIF version

Theorem tr0 5268
Description: The empty set is transitive. (Contributed by NM, 16-Sep-1993.)
Assertion
Ref Expression
tr0 Tr ∅

Proof of Theorem tr0
StepHypRef Expression
1 0ss 4388 . 2 ∅ ⊆ 𝒫 ∅
2 dftr4 5262 . 2 (Tr ∅ ↔ ∅ ⊆ 𝒫 ∅)
31, 2mpbir 230 1 Tr ∅
Colors of variables: wff setvar class
Syntax hints:  wss 3940  c0 4314  𝒫 cpw 4594  Tr wtr 5255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-ral 3054  df-v 3468  df-dif 3943  df-in 3947  df-ss 3957  df-nul 4315  df-pw 4596  df-uni 4900  df-tr 5256
This theorem is referenced by:  ord0  6407  tctr  9731  tc0  9738  r1tr  9767
  Copyright terms: Public domain W3C validator