| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tr0 | Structured version Visualization version GIF version | ||
| Description: The empty set is transitive. (Contributed by NM, 16-Sep-1993.) |
| Ref | Expression |
|---|---|
| tr0 | ⊢ Tr ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ss 4350 | . 2 ⊢ ∅ ⊆ 𝒫 ∅ | |
| 2 | dftr4 5204 | . 2 ⊢ (Tr ∅ ↔ ∅ ⊆ 𝒫 ∅) | |
| 3 | 1, 2 | mpbir 231 | 1 ⊢ Tr ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3902 ∅c0 4283 𝒫 cpw 4550 Tr wtr 5198 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-v 3438 df-dif 3905 df-ss 3919 df-nul 4284 df-pw 4552 df-uni 4860 df-tr 5199 |
| This theorem is referenced by: ord0 6360 tctr 9630 tc0 9637 r1tr 9666 |
| Copyright terms: Public domain | W3C validator |