Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnmptsn Structured version   Visualization version   GIF version

Theorem rnmptsn 37301
Description: The range of a function mapping to singletons. (Contributed by ML, 15-Jul-2020.)
Assertion
Ref Expression
rnmptsn ran (𝑥𝐴 ↦ {𝑥}) = {𝑢 ∣ ∃𝑥𝐴 𝑢 = {𝑥}}
Distinct variable groups:   𝑢,𝐴   𝑥,𝑢
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem rnmptsn
StepHypRef Expression
1 rnopab 5979 . 2 ran {⟨𝑥, 𝑢⟩ ∣ (𝑥𝐴𝑢 = {𝑥})} = {𝑢 ∣ ∃𝑥(𝑥𝐴𝑢 = {𝑥})}
2 df-mpt 5250 . . 3 (𝑥𝐴 ↦ {𝑥}) = {⟨𝑥, 𝑢⟩ ∣ (𝑥𝐴𝑢 = {𝑥})}
32rneqi 5962 . 2 ran (𝑥𝐴 ↦ {𝑥}) = ran {⟨𝑥, 𝑢⟩ ∣ (𝑥𝐴𝑢 = {𝑥})}
4 df-rex 3077 . . 3 (∃𝑥𝐴 𝑢 = {𝑥} ↔ ∃𝑥(𝑥𝐴𝑢 = {𝑥}))
54abbii 2812 . 2 {𝑢 ∣ ∃𝑥𝐴 𝑢 = {𝑥}} = {𝑢 ∣ ∃𝑥(𝑥𝐴𝑢 = {𝑥})}
61, 3, 53eqtr4i 2778 1 ran (𝑥𝐴 ↦ {𝑥}) = {𝑢 ∣ ∃𝑥𝐴 𝑢 = {𝑥}}
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1537  wex 1777  wcel 2108  {cab 2717  wrex 3076  {csn 4648  {copab 5228  cmpt 5249  ran crn 5701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-mpt 5250  df-cnv 5708  df-dm 5710  df-rn 5711
This theorem is referenced by:  f1omptsnlem  37302  mptsnunlem  37304  dissneqlem  37306
  Copyright terms: Public domain W3C validator