![]() |
Mathbox for ML |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rnmptsn | Structured version Visualization version GIF version |
Description: The range of a function mapping to singletons. (Contributed by ML, 15-Jul-2020.) |
Ref | Expression |
---|---|
rnmptsn | ⊢ ran (𝑥 ∈ 𝐴 ↦ {𝑥}) = {𝑢 ∣ ∃𝑥 ∈ 𝐴 𝑢 = {𝑥}} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnopab 5715 | . 2 ⊢ ran {〈𝑥, 𝑢〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑢 = {𝑥})} = {𝑢 ∣ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑢 = {𝑥})} | |
2 | df-mpt 5048 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ {𝑥}) = {〈𝑥, 𝑢〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑢 = {𝑥})} | |
3 | 2 | rneqi 5696 | . 2 ⊢ ran (𝑥 ∈ 𝐴 ↦ {𝑥}) = ran {〈𝑥, 𝑢〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑢 = {𝑥})} |
4 | df-rex 3113 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝑢 = {𝑥} ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑢 = {𝑥})) | |
5 | 4 | abbii 2863 | . 2 ⊢ {𝑢 ∣ ∃𝑥 ∈ 𝐴 𝑢 = {𝑥}} = {𝑢 ∣ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑢 = {𝑥})} |
6 | 1, 3, 5 | 3eqtr4i 2831 | 1 ⊢ ran (𝑥 ∈ 𝐴 ↦ {𝑥}) = {𝑢 ∣ ∃𝑥 ∈ 𝐴 𝑢 = {𝑥}} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1525 ∃wex 1765 ∈ wcel 2083 {cab 2777 ∃wrex 3108 {csn 4478 {copab 5030 ↦ cmpt 5047 ran crn 5451 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-13 2346 ax-ext 2771 ax-sep 5101 ax-nul 5108 ax-pr 5228 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-mo 2578 df-eu 2614 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-rex 3113 df-rab 3116 df-v 3442 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-nul 4218 df-if 4388 df-sn 4479 df-pr 4481 df-op 4485 df-br 4969 df-opab 5031 df-mpt 5048 df-cnv 5458 df-dm 5460 df-rn 5461 |
This theorem is referenced by: f1omptsnlem 34169 mptsnunlem 34171 dissneqlem 34173 |
Copyright terms: Public domain | W3C validator |