Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnmptsn Structured version   Visualization version   GIF version

Theorem rnmptsn 36683
Description: The range of a function mapping to singletons. (Contributed by ML, 15-Jul-2020.)
Assertion
Ref Expression
rnmptsn ran (𝑥𝐴 ↦ {𝑥}) = {𝑢 ∣ ∃𝑥𝐴 𝑢 = {𝑥}}
Distinct variable groups:   𝑢,𝐴   𝑥,𝑢
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem rnmptsn
StepHypRef Expression
1 rnopab 5953 . 2 ran {⟨𝑥, 𝑢⟩ ∣ (𝑥𝐴𝑢 = {𝑥})} = {𝑢 ∣ ∃𝑥(𝑥𝐴𝑢 = {𝑥})}
2 df-mpt 5232 . . 3 (𝑥𝐴 ↦ {𝑥}) = {⟨𝑥, 𝑢⟩ ∣ (𝑥𝐴𝑢 = {𝑥})}
32rneqi 5936 . 2 ran (𝑥𝐴 ↦ {𝑥}) = ran {⟨𝑥, 𝑢⟩ ∣ (𝑥𝐴𝑢 = {𝑥})}
4 df-rex 3070 . . 3 (∃𝑥𝐴 𝑢 = {𝑥} ↔ ∃𝑥(𝑥𝐴𝑢 = {𝑥}))
54abbii 2801 . 2 {𝑢 ∣ ∃𝑥𝐴 𝑢 = {𝑥}} = {𝑢 ∣ ∃𝑥(𝑥𝐴𝑢 = {𝑥})}
61, 3, 53eqtr4i 2769 1 ran (𝑥𝐴 ↦ {𝑥}) = {𝑢 ∣ ∃𝑥𝐴 𝑢 = {𝑥}}
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wex 1780  wcel 2105  {cab 2708  wrex 3069  {csn 4628  {copab 5210  cmpt 5231  ran crn 5677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-mpt 5232  df-cnv 5684  df-dm 5686  df-rn 5687
This theorem is referenced by:  f1omptsnlem  36684  mptsnunlem  36686  dissneqlem  36688
  Copyright terms: Public domain W3C validator