![]() |
Mathbox for ML |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rnmptsn | Structured version Visualization version GIF version |
Description: The range of a function mapping to singletons. (Contributed by ML, 15-Jul-2020.) |
Ref | Expression |
---|---|
rnmptsn | ⊢ ran (𝑥 ∈ 𝐴 ↦ {𝑥}) = {𝑢 ∣ ∃𝑥 ∈ 𝐴 𝑢 = {𝑥}} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnopab 5953 | . 2 ⊢ ran {⟨𝑥, 𝑢⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝑢 = {𝑥})} = {𝑢 ∣ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑢 = {𝑥})} | |
2 | df-mpt 5232 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ {𝑥}) = {⟨𝑥, 𝑢⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝑢 = {𝑥})} | |
3 | 2 | rneqi 5936 | . 2 ⊢ ran (𝑥 ∈ 𝐴 ↦ {𝑥}) = ran {⟨𝑥, 𝑢⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝑢 = {𝑥})} |
4 | df-rex 3070 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝑢 = {𝑥} ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑢 = {𝑥})) | |
5 | 4 | abbii 2801 | . 2 ⊢ {𝑢 ∣ ∃𝑥 ∈ 𝐴 𝑢 = {𝑥}} = {𝑢 ∣ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑢 = {𝑥})} |
6 | 1, 3, 5 | 3eqtr4i 2769 | 1 ⊢ ran (𝑥 ∈ 𝐴 ↦ {𝑥}) = {𝑢 ∣ ∃𝑥 ∈ 𝐴 𝑢 = {𝑥}} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1540 ∃wex 1780 ∈ wcel 2105 {cab 2708 ∃wrex 3069 {csn 4628 {copab 5210 ↦ cmpt 5231 ran crn 5677 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-mpt 5232 df-cnv 5684 df-dm 5686 df-rn 5687 |
This theorem is referenced by: f1omptsnlem 36684 mptsnunlem 36686 dissneqlem 36688 |
Copyright terms: Public domain | W3C validator |