Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnmptsn Structured version   Visualization version   GIF version

Theorem rnmptsn 37316
Description: The range of a function mapping to singletons. (Contributed by ML, 15-Jul-2020.)
Assertion
Ref Expression
rnmptsn ran (𝑥𝐴 ↦ {𝑥}) = {𝑢 ∣ ∃𝑥𝐴 𝑢 = {𝑥}}
Distinct variable groups:   𝑢,𝐴   𝑥,𝑢
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem rnmptsn
StepHypRef Expression
1 rnopab 5907 . 2 ran {⟨𝑥, 𝑢⟩ ∣ (𝑥𝐴𝑢 = {𝑥})} = {𝑢 ∣ ∃𝑥(𝑥𝐴𝑢 = {𝑥})}
2 df-mpt 5184 . . 3 (𝑥𝐴 ↦ {𝑥}) = {⟨𝑥, 𝑢⟩ ∣ (𝑥𝐴𝑢 = {𝑥})}
32rneqi 5890 . 2 ran (𝑥𝐴 ↦ {𝑥}) = ran {⟨𝑥, 𝑢⟩ ∣ (𝑥𝐴𝑢 = {𝑥})}
4 df-rex 3054 . . 3 (∃𝑥𝐴 𝑢 = {𝑥} ↔ ∃𝑥(𝑥𝐴𝑢 = {𝑥}))
54abbii 2796 . 2 {𝑢 ∣ ∃𝑥𝐴 𝑢 = {𝑥}} = {𝑢 ∣ ∃𝑥(𝑥𝐴𝑢 = {𝑥})}
61, 3, 53eqtr4i 2762 1 ran (𝑥𝐴 ↦ {𝑥}) = {𝑢 ∣ ∃𝑥𝐴 𝑢 = {𝑥}}
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wex 1779  wcel 2109  {cab 2707  wrex 3053  {csn 4585  {copab 5164  cmpt 5183  ran crn 5632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-opab 5165  df-mpt 5184  df-cnv 5639  df-dm 5641  df-rn 5642
This theorem is referenced by:  f1omptsnlem  37317  mptsnunlem  37319  dissneqlem  37321
  Copyright terms: Public domain W3C validator