| Mathbox for ML |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rnmptsn | Structured version Visualization version GIF version | ||
| Description: The range of a function mapping to singletons. (Contributed by ML, 15-Jul-2020.) |
| Ref | Expression |
|---|---|
| rnmptsn | ⊢ ran (𝑥 ∈ 𝐴 ↦ {𝑥}) = {𝑢 ∣ ∃𝑥 ∈ 𝐴 𝑢 = {𝑥}} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnopab 5896 | . 2 ⊢ ran {〈𝑥, 𝑢〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑢 = {𝑥})} = {𝑢 ∣ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑢 = {𝑥})} | |
| 2 | df-mpt 5174 | . . 3 ⊢ (𝑥 ∈ 𝐴 ↦ {𝑥}) = {〈𝑥, 𝑢〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑢 = {𝑥})} | |
| 3 | 2 | rneqi 5879 | . 2 ⊢ ran (𝑥 ∈ 𝐴 ↦ {𝑥}) = ran {〈𝑥, 𝑢〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑢 = {𝑥})} |
| 4 | df-rex 3054 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝑢 = {𝑥} ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑢 = {𝑥})) | |
| 5 | 4 | abbii 2796 | . 2 ⊢ {𝑢 ∣ ∃𝑥 ∈ 𝐴 𝑢 = {𝑥}} = {𝑢 ∣ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑢 = {𝑥})} |
| 6 | 1, 3, 5 | 3eqtr4i 2762 | 1 ⊢ ran (𝑥 ∈ 𝐴 ↦ {𝑥}) = {𝑢 ∣ ∃𝑥 ∈ 𝐴 𝑢 = {𝑥}} |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 {cab 2707 ∃wrex 3053 {csn 4577 {copab 5154 ↦ cmpt 5173 ran crn 5620 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-mpt 5174 df-cnv 5627 df-dm 5629 df-rn 5630 |
| This theorem is referenced by: f1omptsnlem 37330 mptsnunlem 37332 dissneqlem 37334 |
| Copyright terms: Public domain | W3C validator |