MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtoclgOLD Structured version   Visualization version   GIF version

Theorem vtoclgOLD 3583
Description: Obsolete version of vtoclg 3566 as of 26-Jan-2025. (Contributed by NM, 17-Apr-1995.) Avoid ax-12 2178. (Revised by SN, 20-Apr-2024.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
vtoclgOLD.1 (𝑥 = 𝐴 → (𝜑𝜓))
vtoclgOLD.2 𝜑
Assertion
Ref Expression
vtoclgOLD (𝐴𝑉𝜓)
Distinct variable groups:   𝑥,𝐴   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)

Proof of Theorem vtoclgOLD
StepHypRef Expression
1 elisset 2826 . 2 (𝐴𝑉 → ∃𝑥 𝑥 = 𝐴)
2 vtoclgOLD.2 . . . 4 𝜑
3 vtoclgOLD.1 . . . 4 (𝑥 = 𝐴 → (𝜑𝜓))
42, 3mpbii 233 . . 3 (𝑥 = 𝐴𝜓)
54exlimiv 1929 . 2 (∃𝑥 𝑥 = 𝐴𝜓)
61, 5syl 17 1 (𝐴𝑉𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wex 1777  wcel 2108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-clel 2819
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator