Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > vtocl2gf | Structured version Visualization version GIF version |
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 25-Apr-1995.) |
Ref | Expression |
---|---|
vtocl2gf.1 | ⊢ Ⅎ𝑥𝐴 |
vtocl2gf.2 | ⊢ Ⅎ𝑦𝐴 |
vtocl2gf.3 | ⊢ Ⅎ𝑦𝐵 |
vtocl2gf.4 | ⊢ Ⅎ𝑥𝜓 |
vtocl2gf.5 | ⊢ Ⅎ𝑦𝜒 |
vtocl2gf.6 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
vtocl2gf.7 | ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) |
vtocl2gf.8 | ⊢ 𝜑 |
Ref | Expression |
---|---|
vtocl2gf | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3450 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
2 | vtocl2gf.3 | . . 3 ⊢ Ⅎ𝑦𝐵 | |
3 | vtocl2gf.2 | . . . . 5 ⊢ Ⅎ𝑦𝐴 | |
4 | 3 | nfel1 2923 | . . . 4 ⊢ Ⅎ𝑦 𝐴 ∈ V |
5 | vtocl2gf.5 | . . . 4 ⊢ Ⅎ𝑦𝜒 | |
6 | 4, 5 | nfim 1899 | . . 3 ⊢ Ⅎ𝑦(𝐴 ∈ V → 𝜒) |
7 | vtocl2gf.7 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | |
8 | 7 | imbi2d 341 | . . 3 ⊢ (𝑦 = 𝐵 → ((𝐴 ∈ V → 𝜓) ↔ (𝐴 ∈ V → 𝜒))) |
9 | vtocl2gf.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
10 | vtocl2gf.4 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
11 | vtocl2gf.6 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
12 | vtocl2gf.8 | . . . 4 ⊢ 𝜑 | |
13 | 9, 10, 11, 12 | vtoclgf 3503 | . . 3 ⊢ (𝐴 ∈ V → 𝜓) |
14 | 2, 6, 8, 13 | vtoclgf 3503 | . 2 ⊢ (𝐵 ∈ 𝑊 → (𝐴 ∈ V → 𝜒)) |
15 | 1, 14 | mpan9 507 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 Ⅎwnf 1786 ∈ wcel 2106 Ⅎwnfc 2887 Vcvv 3432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-v 3434 |
This theorem is referenced by: vtocl3gf 3509 vtocl2gaf 3515 offval22 7928 fmuldfeqlem1 43123 |
Copyright terms: Public domain | W3C validator |