Mathbox for Wolf Lammen < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-3xornot Structured version   Visualization version   GIF version

Theorem wl-3xornot 34857
 Description: Triple xor distributes over negation. Copy of hadnot 1604. (Contributed by Mario Carneiro, 4-Sep-2016.) (Proof shortened by Wolf Lammen, 11-Jul-2020.)
Assertion
Ref Expression
wl-3xornot (¬ hadd(𝜑, 𝜓, 𝜒) ↔ hadd(¬ 𝜑, ¬ 𝜓, ¬ 𝜒))

Proof of Theorem wl-3xornot
StepHypRef Expression
1 notbi 322 . . 3 ((𝜑𝜓) ↔ (¬ 𝜑 ↔ ¬ 𝜓))
21bibi1i 342 . 2 (((𝜑𝜓) ↔ ¬ 𝜒) ↔ ((¬ 𝜑 ↔ ¬ 𝜓) ↔ ¬ 𝜒))
3 xor3 387 . . 3 (¬ ((𝜑𝜓) ↔ 𝜒) ↔ ((𝜑𝜓) ↔ ¬ 𝜒))
4 wl-3xorbi2 34850 . . 3 (hadd(𝜑, 𝜓, 𝜒) ↔ ((𝜑𝜓) ↔ 𝜒))
53, 4xchnxbir 336 . 2 (¬ hadd(𝜑, 𝜓, 𝜒) ↔ ((𝜑𝜓) ↔ ¬ 𝜒))
6 wl-3xorbi2 34850 . 2 (hadd(¬ 𝜑, ¬ 𝜓, ¬ 𝜒) ↔ ((¬ 𝜑 ↔ ¬ 𝜓) ↔ ¬ 𝜒))
72, 5, 63bitr4i 306 1 (¬ hadd(𝜑, 𝜓, 𝜒) ↔ hadd(¬ 𝜑, ¬ 𝜓, ¬ 𝜒))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   ↔ wb 209  haddwhad 1594 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-ifp 1059  df-xor 1503  df-tru 1541  df-had 1595 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator