Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-aleq Structured version   Visualization version   GIF version

Theorem wl-aleq 37537
Description: The semantics of 𝑥𝑦 = 𝑧. (Contributed by Wolf Lammen, 27-Apr-2018.)
Assertion
Ref Expression
wl-aleq (∀𝑥 𝑦 = 𝑧 ↔ (𝑦 = 𝑧 ∧ (∀𝑥 𝑥 = 𝑦 ↔ ∀𝑥 𝑥 = 𝑧)))

Proof of Theorem wl-aleq
StepHypRef Expression
1 sp 2182 . . 3 (∀𝑥 𝑦 = 𝑧𝑦 = 𝑧)
2 equequ2 2024 . . . . 5 (𝑦 = 𝑧 → (𝑥 = 𝑦𝑥 = 𝑧))
32alimi 1810 . . . 4 (∀𝑥 𝑦 = 𝑧 → ∀𝑥(𝑥 = 𝑦𝑥 = 𝑧))
4 albi 1817 . . . 4 (∀𝑥(𝑥 = 𝑦𝑥 = 𝑧) → (∀𝑥 𝑥 = 𝑦 ↔ ∀𝑥 𝑥 = 𝑧))
53, 4syl 17 . . 3 (∀𝑥 𝑦 = 𝑧 → (∀𝑥 𝑥 = 𝑦 ↔ ∀𝑥 𝑥 = 𝑧))
61, 5jca 511 . 2 (∀𝑥 𝑦 = 𝑧 → (𝑦 = 𝑧 ∧ (∀𝑥 𝑥 = 𝑦 ↔ ∀𝑥 𝑥 = 𝑧)))
7 ax7 2014 . . . . . 6 (𝑥 = 𝑦 → (𝑥 = 𝑧𝑦 = 𝑧))
87al2imi 1814 . . . . 5 (∀𝑥 𝑥 = 𝑦 → (∀𝑥 𝑥 = 𝑧 → ∀𝑥 𝑦 = 𝑧))
98a1dd 50 . . . 4 (∀𝑥 𝑥 = 𝑦 → (∀𝑥 𝑥 = 𝑧 → (𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧)))
10 axc9 2386 . . . 4 (¬ ∀𝑥 𝑥 = 𝑦 → (¬ ∀𝑥 𝑥 = 𝑧 → (𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧)))
119, 10bija 380 . . 3 ((∀𝑥 𝑥 = 𝑦 ↔ ∀𝑥 𝑥 = 𝑧) → (𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧))
1211impcom 407 . 2 ((𝑦 = 𝑧 ∧ (∀𝑥 𝑥 = 𝑦 ↔ ∀𝑥 𝑥 = 𝑧)) → ∀𝑥 𝑦 = 𝑧)
136, 12impbii 209 1 (∀𝑥 𝑦 = 𝑧 ↔ (𝑦 = 𝑧 ∧ (∀𝑥 𝑥 = 𝑦 ↔ ∀𝑥 𝑥 = 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-10 2140  ax-12 2176  ax-13 2376
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1542  df-ex 1779  df-nf 1783
This theorem is referenced by:  wl-nfeqfb  37538  wl-ax11-lem2  37588
  Copyright terms: Public domain W3C validator