Proof of Theorem wl-aleq
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | sp 2182 | . . 3
⊢
(∀𝑥 𝑦 = 𝑧 → 𝑦 = 𝑧) | 
| 2 |  | equequ2 2024 | . . . . 5
⊢ (𝑦 = 𝑧 → (𝑥 = 𝑦 ↔ 𝑥 = 𝑧)) | 
| 3 | 2 | alimi 1810 | . . . 4
⊢
(∀𝑥 𝑦 = 𝑧 → ∀𝑥(𝑥 = 𝑦 ↔ 𝑥 = 𝑧)) | 
| 4 |  | albi 1817 | . . . 4
⊢
(∀𝑥(𝑥 = 𝑦 ↔ 𝑥 = 𝑧) → (∀𝑥 𝑥 = 𝑦 ↔ ∀𝑥 𝑥 = 𝑧)) | 
| 5 | 3, 4 | syl 17 | . . 3
⊢
(∀𝑥 𝑦 = 𝑧 → (∀𝑥 𝑥 = 𝑦 ↔ ∀𝑥 𝑥 = 𝑧)) | 
| 6 | 1, 5 | jca 511 | . 2
⊢
(∀𝑥 𝑦 = 𝑧 → (𝑦 = 𝑧 ∧ (∀𝑥 𝑥 = 𝑦 ↔ ∀𝑥 𝑥 = 𝑧))) | 
| 7 |  | ax7 2014 | . . . . . 6
⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 → 𝑦 = 𝑧)) | 
| 8 | 7 | al2imi 1814 | . . . . 5
⊢
(∀𝑥 𝑥 = 𝑦 → (∀𝑥 𝑥 = 𝑧 → ∀𝑥 𝑦 = 𝑧)) | 
| 9 | 8 | a1dd 50 | . . . 4
⊢
(∀𝑥 𝑥 = 𝑦 → (∀𝑥 𝑥 = 𝑧 → (𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧))) | 
| 10 |  | axc9 2386 | . . . 4
⊢ (¬
∀𝑥 𝑥 = 𝑦 → (¬ ∀𝑥 𝑥 = 𝑧 → (𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧))) | 
| 11 | 9, 10 | bija 380 | . . 3
⊢
((∀𝑥 𝑥 = 𝑦 ↔ ∀𝑥 𝑥 = 𝑧) → (𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧)) | 
| 12 | 11 | impcom 407 | . 2
⊢ ((𝑦 = 𝑧 ∧ (∀𝑥 𝑥 = 𝑦 ↔ ∀𝑥 𝑥 = 𝑧)) → ∀𝑥 𝑦 = 𝑧) | 
| 13 | 6, 12 | impbii 209 | 1
⊢
(∀𝑥 𝑦 = 𝑧 ↔ (𝑦 = 𝑧 ∧ (∀𝑥 𝑥 = 𝑦 ↔ ∀𝑥 𝑥 = 𝑧))) |