Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-cbvalnaed Structured version   Visualization version   GIF version

Theorem wl-cbvalnaed 37512
Description: wl-cbvalnae 37513 with a context. (Contributed by Wolf Lammen, 28-Jul-2019.)
Hypotheses
Ref Expression
wl-cbvalnaed.1 𝑥𝜑
wl-cbvalnaed.2 𝑦𝜑
wl-cbvalnaed.3 (𝜑 → (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑦𝜓))
wl-cbvalnaed.4 (𝜑 → (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝜒))
wl-cbvalnaed.5 (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))
Assertion
Ref Expression
wl-cbvalnaed (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒))

Proof of Theorem wl-cbvalnaed
StepHypRef Expression
1 wl-cbvalnaed.1 . . . 4 𝑥𝜑
2 wl-cbvalnaed.2 . . . 4 𝑦𝜑
3 wl-cbvalnaed.5 . . . 4 (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))
41, 2, 3wl-dral1d 37511 . . 3 (𝜑 → (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜓 ↔ ∀𝑦𝜒)))
54imp 406 . 2 ((𝜑 ∧ ∀𝑥 𝑥 = 𝑦) → (∀𝑥𝜓 ↔ ∀𝑦𝜒))
6 nfnae 2436 . . . 4 𝑥 ¬ ∀𝑥 𝑥 = 𝑦
71, 6nfan 1896 . . 3 𝑥(𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦)
8 wl-nfnae1 37508 . . . 4 𝑦 ¬ ∀𝑥 𝑥 = 𝑦
92, 8nfan 1896 . . 3 𝑦(𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦)
10 wl-cbvalnaed.3 . . . 4 (𝜑 → (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑦𝜓))
1110imp 406 . . 3 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑦𝜓)
12 wl-cbvalnaed.4 . . . 4 (𝜑 → (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝜒))
1312imp 406 . . 3 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝜒)
143adantr 480 . . 3 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → (𝑥 = 𝑦 → (𝜓𝜒)))
157, 9, 11, 13, 14cbv2 2405 . 2 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → (∀𝑥𝜓 ↔ ∀𝑦𝜒))
165, 15pm2.61dan 813 1 (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1534  wnf 1779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-10 2138  ax-11 2154  ax-12 2174  ax-13 2374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1539  df-ex 1776  df-nf 1780
This theorem is referenced by:  wl-cbvalnae  37513
  Copyright terms: Public domain W3C validator