Mathbox for Wolf Lammen < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-cbvalnaed Structured version   Visualization version   GIF version

Theorem wl-cbvalnaed 34643
 Description: wl-cbvalnae 34644 with a context. (Contributed by Wolf Lammen, 28-Jul-2019.)
Hypotheses
Ref Expression
wl-cbvalnaed.1 𝑥𝜑
wl-cbvalnaed.2 𝑦𝜑
wl-cbvalnaed.3 (𝜑 → (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑦𝜓))
wl-cbvalnaed.4 (𝜑 → (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝜒))
wl-cbvalnaed.5 (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))
Assertion
Ref Expression
wl-cbvalnaed (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒))

Proof of Theorem wl-cbvalnaed
StepHypRef Expression
1 wl-cbvalnaed.1 . . . 4 𝑥𝜑
2 wl-cbvalnaed.2 . . . 4 𝑦𝜑
3 wl-cbvalnaed.5 . . . 4 (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))
41, 2, 3wl-dral1d 34642 . . 3 (𝜑 → (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜓 ↔ ∀𝑦𝜒)))
54imp 407 . 2 ((𝜑 ∧ ∀𝑥 𝑥 = 𝑦) → (∀𝑥𝜓 ↔ ∀𝑦𝜒))
6 nfnae 2453 . . . 4 𝑥 ¬ ∀𝑥 𝑥 = 𝑦
71, 6nfan 1893 . . 3 𝑥(𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦)
8 wl-nfnae1 34640 . . . 4 𝑦 ¬ ∀𝑥 𝑥 = 𝑦
92, 8nfan 1893 . . 3 𝑦(𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦)
10 wl-cbvalnaed.3 . . . 4 (𝜑 → (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑦𝜓))
1110imp 407 . . 3 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑦𝜓)
12 wl-cbvalnaed.4 . . . 4 (𝜑 → (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝜒))
1312imp 407 . . 3 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝜒)
143adantr 481 . . 3 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → (𝑥 = 𝑦 → (𝜓𝜒)))
157, 9, 11, 13, 14cbv2 2419 . 2 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → (∀𝑥𝜓 ↔ ∀𝑦𝜒))
165, 15pm2.61dan 809 1 (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 207   ∧ wa 396  ∀wal 1528  Ⅎwnf 1777 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-10 2138  ax-11 2153  ax-12 2169  ax-13 2385 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-tru 1533  df-ex 1774  df-nf 1778 This theorem is referenced by:  wl-cbvalnae  34644
 Copyright terms: Public domain W3C validator