| Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-dral1d | Structured version Visualization version GIF version | ||
| Description: A version of dral1 2444 with a context. Note: At first glance one might be tempted to generalize this (or a similar) theorem by weakening the first two hypotheses adding a 𝑥 = 𝑦, ∀𝑥𝑥 = 𝑦 or 𝜑 antecedent. wl-equsal1i 37545 and nf5di 2285 show that this is in fact pointless. (Contributed by Wolf Lammen, 28-Jul-2019.) |
| Ref | Expression |
|---|---|
| wl-dral1d.1 | ⊢ Ⅎ𝑥𝜑 |
| wl-dral1d.2 | ⊢ Ⅎ𝑦𝜑 |
| wl-dral1d.3 | ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) |
| Ref | Expression |
|---|---|
| wl-dral1d | ⊢ (𝜑 → (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜓 ↔ ∀𝑦𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wl-dral1d.3 | . . . . . . . 8 ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) | |
| 2 | 1 | com12 32 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝜑 → (𝜓 ↔ 𝜒))) |
| 3 | 2 | pm5.74d 273 | . . . . . 6 ⊢ (𝑥 = 𝑦 → ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒))) |
| 4 | 3 | sps 2185 | . . . . 5 ⊢ (∀𝑥 𝑥 = 𝑦 → ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒))) |
| 5 | 4 | dral1 2444 | . . . 4 ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑥(𝜑 → 𝜓) ↔ ∀𝑦(𝜑 → 𝜒))) |
| 6 | wl-dral1d.1 | . . . . 5 ⊢ Ⅎ𝑥𝜑 | |
| 7 | 6 | 19.21 2207 | . . . 4 ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥𝜓)) |
| 8 | wl-dral1d.2 | . . . . 5 ⊢ Ⅎ𝑦𝜑 | |
| 9 | 8 | 19.21 2207 | . . . 4 ⊢ (∀𝑦(𝜑 → 𝜒) ↔ (𝜑 → ∀𝑦𝜒)) |
| 10 | 5, 7, 9 | 3bitr3g 313 | . . 3 ⊢ (∀𝑥 𝑥 = 𝑦 → ((𝜑 → ∀𝑥𝜓) ↔ (𝜑 → ∀𝑦𝜒))) |
| 11 | 10 | pm5.74rd 274 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒))) |
| 12 | 11 | com12 32 | 1 ⊢ (𝜑 → (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜓 ↔ ∀𝑦𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-10 2141 ax-12 2177 ax-13 2377 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: wl-cbvalnaed 37533 |
| Copyright terms: Public domain | W3C validator |