Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-dral1d Structured version   Visualization version   GIF version

Theorem wl-dral1d 33800
Description: A version of dral1 2423 with a context. Note: At first glance one might be tempted to generalize this (or a similar) theorem by weakening the first two hypotheses adding a 𝑥 = 𝑦, 𝑥𝑥 = 𝑦 or 𝜑 antecedent. wl-equsal1i 33811 and nf5di 2304 show that this is in fact pointless. (Contributed by Wolf Lammen, 28-Jul-2019.)
Hypotheses
Ref Expression
wl-dral1d.1 𝑥𝜑
wl-dral1d.2 𝑦𝜑
wl-dral1d.3 (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))
Assertion
Ref Expression
wl-dral1d (𝜑 → (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜓 ↔ ∀𝑦𝜒)))

Proof of Theorem wl-dral1d
StepHypRef Expression
1 wl-dral1d.3 . . . . . . . 8 (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))
21com12 32 . . . . . . 7 (𝑥 = 𝑦 → (𝜑 → (𝜓𝜒)))
32pm5.74d 265 . . . . . 6 (𝑥 = 𝑦 → ((𝜑𝜓) ↔ (𝜑𝜒)))
43sps 2219 . . . . 5 (∀𝑥 𝑥 = 𝑦 → ((𝜑𝜓) ↔ (𝜑𝜒)))
54dral1 2423 . . . 4 (∀𝑥 𝑥 = 𝑦 → (∀𝑥(𝜑𝜓) ↔ ∀𝑦(𝜑𝜒)))
6 wl-dral1d.1 . . . . 5 𝑥𝜑
7619.21 2241 . . . 4 (∀𝑥(𝜑𝜓) ↔ (𝜑 → ∀𝑥𝜓))
8 wl-dral1d.2 . . . . 5 𝑦𝜑
9819.21 2241 . . . 4 (∀𝑦(𝜑𝜒) ↔ (𝜑 → ∀𝑦𝜒))
105, 7, 93bitr3g 305 . . 3 (∀𝑥 𝑥 = 𝑦 → ((𝜑 → ∀𝑥𝜓) ↔ (𝜑 → ∀𝑦𝜒)))
1110pm5.74rd 266 . 2 (∀𝑥 𝑥 = 𝑦 → (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒)))
1211com12 32 1 (𝜑 → (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜓 ↔ ∀𝑦𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wal 1651  wnf 1879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-10 2185  ax-12 2213  ax-13 2354
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-ex 1876  df-nf 1880
This theorem is referenced by:  wl-cbvalnaed  33801
  Copyright terms: Public domain W3C validator