Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-cbvalnae Structured version   Visualization version   GIF version

Theorem wl-cbvalnae 35598
Description: A more general version of cbval 2399 when nonfree properties depend on a distinctor. Such expressions arise in proofs aiming at the elimination of distinct variable constraints, specifically in application of dvelimf 2449, nfsb2 2488 or dveeq1 2381. (Contributed by Wolf Lammen, 4-Jun-2019.)
Hypotheses
Ref Expression
wl-cbvalnae.1 (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑦𝜑)
wl-cbvalnae.2 (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝜓)
wl-cbvalnae.3 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
wl-cbvalnae (∀𝑥𝜑 ↔ ∀𝑦𝜓)

Proof of Theorem wl-cbvalnae
StepHypRef Expression
1 nftru 1812 . . 3 𝑥
2 nftru 1812 . . 3 𝑦
3 wl-cbvalnae.1 . . . 4 (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑦𝜑)
43a1i 11 . . 3 (⊤ → (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑦𝜑))
5 wl-cbvalnae.2 . . . 4 (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝜓)
65a1i 11 . . 3 (⊤ → (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝜓))
7 wl-cbvalnae.3 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
87a1i 11 . . 3 (⊤ → (𝑥 = 𝑦 → (𝜑𝜓)))
91, 2, 4, 6, 8wl-cbvalnaed 35597 . 2 (⊤ → (∀𝑥𝜑 ↔ ∀𝑦𝜓))
109mptru 1550 1 (∀𝑥𝜑 ↔ ∀𝑦𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wal 1541  wtru 1544  wnf 1791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-10 2143  ax-11 2160  ax-12 2177  ax-13 2373
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-tru 1546  df-ex 1788  df-nf 1792
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator