| Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-cbvalnae | Structured version Visualization version GIF version | ||
| Description: A more general version of cbval 2401 when nonfree properties depend on a distinctor. Such expressions arise in proofs aiming at the elimination of distinct variable constraints, specifically in application of dvelimf 2451, nfsb2 2486 or dveeq1 2383. (Contributed by Wolf Lammen, 4-Jun-2019.) |
| Ref | Expression |
|---|---|
| wl-cbvalnae.1 | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑦𝜑) |
| wl-cbvalnae.2 | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝜓) |
| wl-cbvalnae.3 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| wl-cbvalnae | ⊢ (∀𝑥𝜑 ↔ ∀𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nftru 1803 | . . 3 ⊢ Ⅎ𝑥⊤ | |
| 2 | nftru 1803 | . . 3 ⊢ Ⅎ𝑦⊤ | |
| 3 | wl-cbvalnae.1 | . . . 4 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑦𝜑) | |
| 4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑦𝜑)) |
| 5 | wl-cbvalnae.2 | . . . 4 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝜓) | |
| 6 | 5 | a1i 11 | . . 3 ⊢ (⊤ → (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝜓)) |
| 7 | wl-cbvalnae.3 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 8 | 7 | a1i 11 | . . 3 ⊢ (⊤ → (𝑥 = 𝑦 → (𝜑 ↔ 𝜓))) |
| 9 | 1, 2, 4, 6, 8 | wl-cbvalnaed 37467 | . 2 ⊢ (⊤ → (∀𝑥𝜑 ↔ ∀𝑦𝜓)) |
| 10 | 9 | mptru 1546 | 1 ⊢ (∀𝑥𝜑 ↔ ∀𝑦𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∀wal 1537 ⊤wtru 1540 Ⅎwnf 1782 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-10 2140 ax-11 2156 ax-12 2176 ax-13 2375 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-nf 1783 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |