![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbv2 | Structured version Visualization version GIF version |
Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 3-Oct-2016.) Format hypotheses to common style. (Revised by Wolf Lammen, 13-May-2018.) |
Ref | Expression |
---|---|
cbv2.1 | ⊢ Ⅎ𝑥𝜑 |
cbv2.2 | ⊢ Ⅎ𝑦𝜑 |
cbv2.3 | ⊢ (𝜑 → Ⅎ𝑦𝜓) |
cbv2.4 | ⊢ (𝜑 → Ⅎ𝑥𝜒) |
cbv2.5 | ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) |
Ref | Expression |
---|---|
cbv2 | ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbv2.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | cbv2.2 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
3 | 2 | nf5ri 2238 | . . 3 ⊢ (𝜑 → ∀𝑦𝜑) |
4 | 1, 3 | alrimi 2258 | . 2 ⊢ (𝜑 → ∀𝑥∀𝑦𝜑) |
5 | cbv2.3 | . . . 4 ⊢ (𝜑 → Ⅎ𝑦𝜓) | |
6 | 5 | nf5rd 2240 | . . 3 ⊢ (𝜑 → (𝜓 → ∀𝑦𝜓)) |
7 | cbv2.4 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
8 | 7 | nf5rd 2240 | . . 3 ⊢ (𝜑 → (𝜒 → ∀𝑥𝜒)) |
9 | cbv2.5 | . . 3 ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) | |
10 | 6, 8, 9 | cbv2h 2423 | . 2 ⊢ (∀𝑥∀𝑦𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒)) |
11 | 4, 10 | syl 17 | 1 ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∀wal 1656 Ⅎwnf 1884 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-ex 1881 df-nf 1885 |
This theorem is referenced by: cbvald 2429 sb9 2559 wl-cbvalnaed 33864 wl-sb8t 33879 |
Copyright terms: Public domain | W3C validator |