MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbv2 Structured version   Visualization version   GIF version

Theorem cbv2 2404
Description: Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2373. See cbv2w 2337 with disjoint variable conditions, not depending on ax-13 2373. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 3-Oct-2016.) Format hypotheses to common style, avoid ax-10 2140. (Revised by Wolf Lammen, 10-Sep-2023.) (New usage is discouraged.)
Hypotheses
Ref Expression
cbv2.1 𝑥𝜑
cbv2.2 𝑦𝜑
cbv2.3 (𝜑 → Ⅎ𝑦𝜓)
cbv2.4 (𝜑 → Ⅎ𝑥𝜒)
cbv2.5 (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))
Assertion
Ref Expression
cbv2 (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒))

Proof of Theorem cbv2
StepHypRef Expression
1 cbv2.1 . . 3 𝑥𝜑
2 cbv2.2 . . 3 𝑦𝜑
3 cbv2.3 . . 3 (𝜑 → Ⅎ𝑦𝜓)
4 cbv2.4 . . 3 (𝜑 → Ⅎ𝑥𝜒)
5 cbv2.5 . . . 4 (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))
6 biimp 214 . . . 4 ((𝜓𝜒) → (𝜓𝜒))
75, 6syl6 35 . . 3 (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))
81, 2, 3, 4, 7cbv1 2403 . 2 (𝜑 → (∀𝑥𝜓 → ∀𝑦𝜒))
9 equcomi 2023 . . . 4 (𝑦 = 𝑥𝑥 = 𝑦)
10 biimpr 219 . . . 4 ((𝜓𝜒) → (𝜒𝜓))
119, 5, 10syl56 36 . . 3 (𝜑 → (𝑦 = 𝑥 → (𝜒𝜓)))
122, 1, 4, 3, 11cbv1 2403 . 2 (𝜑 → (∀𝑦𝜒 → ∀𝑥𝜓))
138, 12impbid 211 1 (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1539  wnf 1789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-11 2157  ax-12 2174  ax-13 2373
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ex 1786  df-nf 1790
This theorem is referenced by:  cbvald  2408  cbval2  2412  sb9  2524  wl-cbvalnaed  35670  wl-sb8t  35686
  Copyright terms: Public domain W3C validator