| Mathbox for Brendan Leahy |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rabiun | Structured version Visualization version GIF version | ||
| Description: Abstraction restricted to an indexed union. (Contributed by Brendan Leahy, 26-Oct-2017.) |
| Ref | Expression |
|---|---|
| rabiun | ⊢ {𝑥 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 ∣ 𝜑} = ∪ 𝑦 ∈ 𝐴 {𝑥 ∈ 𝐵 ∣ 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eliun 4945 | . . . . . 6 ⊢ (𝑥 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 ↔ ∃𝑦 ∈ 𝐴 𝑥 ∈ 𝐵) | |
| 2 | 1 | anbi1i 624 | . . . . 5 ⊢ ((𝑥 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 ∧ 𝜑) ↔ (∃𝑦 ∈ 𝐴 𝑥 ∈ 𝐵 ∧ 𝜑)) |
| 3 | r19.41v 3162 | . . . . 5 ⊢ (∃𝑦 ∈ 𝐴 (𝑥 ∈ 𝐵 ∧ 𝜑) ↔ (∃𝑦 ∈ 𝐴 𝑥 ∈ 𝐵 ∧ 𝜑)) | |
| 4 | 2, 3 | bitr4i 278 | . . . 4 ⊢ ((𝑥 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 ∧ 𝜑) ↔ ∃𝑦 ∈ 𝐴 (𝑥 ∈ 𝐵 ∧ 𝜑)) |
| 5 | 4 | abbii 2798 | . . 3 ⊢ {𝑥 ∣ (𝑥 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 ∧ 𝜑)} = {𝑥 ∣ ∃𝑦 ∈ 𝐴 (𝑥 ∈ 𝐵 ∧ 𝜑)} |
| 6 | df-rab 3396 | . . 3 ⊢ {𝑥 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 ∧ 𝜑)} | |
| 7 | iunab 5000 | . . 3 ⊢ ∪ 𝑦 ∈ 𝐴 {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)} = {𝑥 ∣ ∃𝑦 ∈ 𝐴 (𝑥 ∈ 𝐵 ∧ 𝜑)} | |
| 8 | 5, 6, 7 | 3eqtr4i 2764 | . 2 ⊢ {𝑥 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 ∣ 𝜑} = ∪ 𝑦 ∈ 𝐴 {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)} |
| 9 | df-rab 3396 | . . . 4 ⊢ {𝑥 ∈ 𝐵 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)} | |
| 10 | 9 | a1i 11 | . . 3 ⊢ (𝑦 ∈ 𝐴 → {𝑥 ∈ 𝐵 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)}) |
| 11 | 10 | iuneq2i 4963 | . 2 ⊢ ∪ 𝑦 ∈ 𝐴 {𝑥 ∈ 𝐵 ∣ 𝜑} = ∪ 𝑦 ∈ 𝐴 {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)} |
| 12 | 8, 11 | eqtr4i 2757 | 1 ⊢ {𝑥 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 ∣ 𝜑} = ∪ 𝑦 ∈ 𝐴 {𝑥 ∈ 𝐵 ∣ 𝜑} |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2111 {cab 2709 ∃wrex 3056 {crab 3395 ∪ ciun 4941 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-ss 3919 df-iun 4943 |
| This theorem is referenced by: itg2addnclem2 37718 |
| Copyright terms: Public domain | W3C validator |