![]() |
Mathbox for Brendan Leahy |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rabiun | Structured version Visualization version GIF version |
Description: Abstraction restricted to an indexed union. (Contributed by Brendan Leahy, 26-Oct-2017.) |
Ref | Expression |
---|---|
rabiun | ⊢ {𝑥 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 ∣ 𝜑} = ∪ 𝑦 ∈ 𝐴 {𝑥 ∈ 𝐵 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eliun 4963 | . . . . . 6 ⊢ (𝑥 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 ↔ ∃𝑦 ∈ 𝐴 𝑥 ∈ 𝐵) | |
2 | 1 | anbi1i 625 | . . . . 5 ⊢ ((𝑥 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 ∧ 𝜑) ↔ (∃𝑦 ∈ 𝐴 𝑥 ∈ 𝐵 ∧ 𝜑)) |
3 | r19.41v 3186 | . . . . 5 ⊢ (∃𝑦 ∈ 𝐴 (𝑥 ∈ 𝐵 ∧ 𝜑) ↔ (∃𝑦 ∈ 𝐴 𝑥 ∈ 𝐵 ∧ 𝜑)) | |
4 | 2, 3 | bitr4i 278 | . . . 4 ⊢ ((𝑥 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 ∧ 𝜑) ↔ ∃𝑦 ∈ 𝐴 (𝑥 ∈ 𝐵 ∧ 𝜑)) |
5 | 4 | abbii 2807 | . . 3 ⊢ {𝑥 ∣ (𝑥 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 ∧ 𝜑)} = {𝑥 ∣ ∃𝑦 ∈ 𝐴 (𝑥 ∈ 𝐵 ∧ 𝜑)} |
6 | df-rab 3411 | . . 3 ⊢ {𝑥 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 ∧ 𝜑)} | |
7 | iunab 5016 | . . 3 ⊢ ∪ 𝑦 ∈ 𝐴 {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)} = {𝑥 ∣ ∃𝑦 ∈ 𝐴 (𝑥 ∈ 𝐵 ∧ 𝜑)} | |
8 | 5, 6, 7 | 3eqtr4i 2775 | . 2 ⊢ {𝑥 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 ∣ 𝜑} = ∪ 𝑦 ∈ 𝐴 {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)} |
9 | df-rab 3411 | . . . 4 ⊢ {𝑥 ∈ 𝐵 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)} | |
10 | 9 | a1i 11 | . . 3 ⊢ (𝑦 ∈ 𝐴 → {𝑥 ∈ 𝐵 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)}) |
11 | 10 | iuneq2i 4980 | . 2 ⊢ ∪ 𝑦 ∈ 𝐴 {𝑥 ∈ 𝐵 ∣ 𝜑} = ∪ 𝑦 ∈ 𝐴 {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)} |
12 | 8, 11 | eqtr4i 2768 | 1 ⊢ {𝑥 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 ∣ 𝜑} = ∪ 𝑦 ∈ 𝐴 {𝑥 ∈ 𝐵 ∣ 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 397 = wceq 1542 ∈ wcel 2107 {cab 2714 ∃wrex 3074 {crab 3410 ∪ ciun 4959 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ral 3066 df-rex 3075 df-rab 3411 df-v 3450 df-in 3922 df-ss 3932 df-iun 4961 |
This theorem is referenced by: itg2addnclem2 36159 |
Copyright terms: Public domain | W3C validator |