| Mathbox for Brendan Leahy |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rabiun | Structured version Visualization version GIF version | ||
| Description: Abstraction restricted to an indexed union. (Contributed by Brendan Leahy, 26-Oct-2017.) |
| Ref | Expression |
|---|---|
| rabiun | ⊢ {𝑥 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 ∣ 𝜑} = ∪ 𝑦 ∈ 𝐴 {𝑥 ∈ 𝐵 ∣ 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eliun 4971 | . . . . . 6 ⊢ (𝑥 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 ↔ ∃𝑦 ∈ 𝐴 𝑥 ∈ 𝐵) | |
| 2 | 1 | anbi1i 624 | . . . . 5 ⊢ ((𝑥 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 ∧ 𝜑) ↔ (∃𝑦 ∈ 𝐴 𝑥 ∈ 𝐵 ∧ 𝜑)) |
| 3 | r19.41v 3174 | . . . . 5 ⊢ (∃𝑦 ∈ 𝐴 (𝑥 ∈ 𝐵 ∧ 𝜑) ↔ (∃𝑦 ∈ 𝐴 𝑥 ∈ 𝐵 ∧ 𝜑)) | |
| 4 | 2, 3 | bitr4i 278 | . . . 4 ⊢ ((𝑥 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 ∧ 𝜑) ↔ ∃𝑦 ∈ 𝐴 (𝑥 ∈ 𝐵 ∧ 𝜑)) |
| 5 | 4 | abbii 2802 | . . 3 ⊢ {𝑥 ∣ (𝑥 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 ∧ 𝜑)} = {𝑥 ∣ ∃𝑦 ∈ 𝐴 (𝑥 ∈ 𝐵 ∧ 𝜑)} |
| 6 | df-rab 3416 | . . 3 ⊢ {𝑥 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 ∧ 𝜑)} | |
| 7 | iunab 5027 | . . 3 ⊢ ∪ 𝑦 ∈ 𝐴 {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)} = {𝑥 ∣ ∃𝑦 ∈ 𝐴 (𝑥 ∈ 𝐵 ∧ 𝜑)} | |
| 8 | 5, 6, 7 | 3eqtr4i 2768 | . 2 ⊢ {𝑥 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 ∣ 𝜑} = ∪ 𝑦 ∈ 𝐴 {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)} |
| 9 | df-rab 3416 | . . . 4 ⊢ {𝑥 ∈ 𝐵 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)} | |
| 10 | 9 | a1i 11 | . . 3 ⊢ (𝑦 ∈ 𝐴 → {𝑥 ∈ 𝐵 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)}) |
| 11 | 10 | iuneq2i 4989 | . 2 ⊢ ∪ 𝑦 ∈ 𝐴 {𝑥 ∈ 𝐵 ∣ 𝜑} = ∪ 𝑦 ∈ 𝐴 {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)} |
| 12 | 8, 11 | eqtr4i 2761 | 1 ⊢ {𝑥 ∈ ∪ 𝑦 ∈ 𝐴 𝐵 ∣ 𝜑} = ∪ 𝑦 ∈ 𝐴 {𝑥 ∈ 𝐵 ∣ 𝜑} |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2108 {cab 2713 ∃wrex 3060 {crab 3415 ∪ ciun 4967 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-ss 3943 df-iun 4969 |
| This theorem is referenced by: itg2addnclem2 37696 |
| Copyright terms: Public domain | W3C validator |