Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rabiun Structured version   Visualization version   GIF version

Theorem rabiun 35677
Description: Abstraction restricted to an indexed union. (Contributed by Brendan Leahy, 26-Oct-2017.)
Assertion
Ref Expression
rabiun {𝑥 𝑦𝐴 𝐵𝜑} = 𝑦𝐴 {𝑥𝐵𝜑}
Distinct variable groups:   𝜑,𝑦   𝑥,𝐴   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem rabiun
StepHypRef Expression
1 eliun 4925 . . . . . 6 (𝑥 𝑦𝐴 𝐵 ↔ ∃𝑦𝐴 𝑥𝐵)
21anbi1i 623 . . . . 5 ((𝑥 𝑦𝐴 𝐵𝜑) ↔ (∃𝑦𝐴 𝑥𝐵𝜑))
3 r19.41v 3273 . . . . 5 (∃𝑦𝐴 (𝑥𝐵𝜑) ↔ (∃𝑦𝐴 𝑥𝐵𝜑))
42, 3bitr4i 277 . . . 4 ((𝑥 𝑦𝐴 𝐵𝜑) ↔ ∃𝑦𝐴 (𝑥𝐵𝜑))
54abbii 2809 . . 3 {𝑥 ∣ (𝑥 𝑦𝐴 𝐵𝜑)} = {𝑥 ∣ ∃𝑦𝐴 (𝑥𝐵𝜑)}
6 df-rab 3072 . . 3 {𝑥 𝑦𝐴 𝐵𝜑} = {𝑥 ∣ (𝑥 𝑦𝐴 𝐵𝜑)}
7 iunab 4977 . . 3 𝑦𝐴 {𝑥 ∣ (𝑥𝐵𝜑)} = {𝑥 ∣ ∃𝑦𝐴 (𝑥𝐵𝜑)}
85, 6, 73eqtr4i 2776 . 2 {𝑥 𝑦𝐴 𝐵𝜑} = 𝑦𝐴 {𝑥 ∣ (𝑥𝐵𝜑)}
9 df-rab 3072 . . . 4 {𝑥𝐵𝜑} = {𝑥 ∣ (𝑥𝐵𝜑)}
109a1i 11 . . 3 (𝑦𝐴 → {𝑥𝐵𝜑} = {𝑥 ∣ (𝑥𝐵𝜑)})
1110iuneq2i 4942 . 2 𝑦𝐴 {𝑥𝐵𝜑} = 𝑦𝐴 {𝑥 ∣ (𝑥𝐵𝜑)}
128, 11eqtr4i 2769 1 {𝑥 𝑦𝐴 𝐵𝜑} = 𝑦𝐴 {𝑥𝐵𝜑}
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1539  wcel 2108  {cab 2715  wrex 3064  {crab 3067   ciun 4921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-in 3890  df-ss 3900  df-iun 4923
This theorem is referenced by:  itg2addnclem2  35756
  Copyright terms: Public domain W3C validator